اندریانی، صغری؛ 1393. کاربرد تکنیکهای سنجشازدور و سیستم اطلاعات جغرافیایی در بررسی تغییرات کاربری اراضی و تأثیر آن بر دبی رودخانه (مطالعه موردی: صوفی چای). پایاننامه کارشناسی ارشد RS & GIS، دانشگاه تبریز.
بیاتی خطیبی، مریم؛ 1389. ارزیابی و پهنهبندی خطر زمینلغزش در حوضة قرنقوچای به روش دو متغیرة آماری. نشریه جغرافیا و برنامهریزی. شماره 32. صص 1-27.
رأفتنیا، نصرت ا...؛ کاویانپور، محمدکاظم؛ احمدی، توفیق؛ 1390. بررسی علل وقوع پدیده زمینلغزش در جنگل گلندرود (مطالعه موردی، سری 3 حوزه آبخیز 43). فصلنامه علوم و فنون منابع طبیعی. سال ششم. شماره 1. صص 53-63.
رجبی، معصومه؛ فیض اله پور، مهدی؛ 1393. پهنهبندی زمینلغزشهای حوضه رودخانه گیوی چای با استفاده از مدل پرسپترون چندلایه از نوع پیشخور پس انتشار (BP). جغرافیا و توسعه. شماره 36. صص 161-180.
یمانی، مجتبی؛ احمدآبادی، علی؛ زارع، غلامرضا؛ 1391. بهکارگیری الگوریتمهای ماشینهای بردار پشتیبان در پهنهبندی خطر زمینلغزش (مطالعه موردی: حوضه آبریز درکه). نشریه جغرافیا و مخاطرات محیطی. شماره 3. صص 125-142.
Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269–277.
Atkinson, P. M., & Tatnall, A. R. L. (1997). Introduction of neural networks in remote sensing. Remote Sensing, 18(4), 699-709.
Ayalew, L., & Yamagishi, H. (2004). Slope failures in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology, 57, 95-116.
Bommer, J. J., & Rodriguez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63, 189–220.
Burrough, P. A. (1989). Fuzzy mathematical methods for soil survey and land evaluation. Soil Science, 40, 477-492.
Clark, W. A., & Hosking, P. L. (1986). Statistical methods for geographers (Chap. 13). New York: John Wiley & Sons.
Collison, A., Wade, S., Griffiths, J., & Dehn, M. (2000). Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Engineering Geology, 55, 205–218.
Crozier, M. J. and Glade, T. (2005). Landslide Hazard and Risk: Issues, Concepts and Approach. In T. Glade, M. Anderson and M. J. Crozier (eds.), Landslide Hazard and Risk (pp. 43-74). England: John Wiley & Sons.
Dahal, R.K., Hasegawa, S., Masuda, T., & Yamanaka, M., 2006a. Roadside slope failures in Nepal during torrential rainfall and their mitigation. In H. Marui., T. Marutani., N. Watanabe., H. Kawabe., Y. Gonda., M. Kimura., H. Ochiai., K. Ogawa., G. Fiebiger., J. Heumader., F. Rudolf-Miklau., H. Kienholz & M. Mikos (Eds.), Disaster mitigation of debris flow, slope failures and landslides (P. 503-514). Tokyo: Universal Academy Press.
Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2000). Assessment of landslide hazard on the natural terrain of Lantau Island, Hong Kong. Environment Geology, 40, 381-391.
Garrett, J. (1994). Where and why artificial neural networks are applicable in civil engineering. Computer Civil Engineering, 8, 129-130.
Gong, P. (1996). Integrated analysis of spatial data for multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping. Phonogram: Engineering Remote Sensing, 62, 513-523.
Hong, H., Pradhan, B., Xu, C., & Tien Bui, D. T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281.
Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 366-347.
Keefer, D. V. (2000). Statistical analysis of an earthquake-induced landslide distribution – the 1989 Loma Prieta, California event. Engineering Geology, 58, 231–249.
Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12-23.
Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32, 81-100.
Pan, X., Nakamura, H., Nozaki, T., & Huang, X. (2008). A GIS-based landslide hazard assessment by multivariate analysis. Japan Landslide Society, 45(3), 187–195.
Raghuvanshi, T. K., Ibrahim, J., & Ayalew, D. (2014a). Slope stability susceptibility evaluation parameter (SSEP) rating scheme: An approach for landslide hazard zonation. African Earth Science, 99, 595–612.
Saha, A. K., Gupta, R. P., Starker, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides, 2, 61-69.
Schmucker, K. J. (1982). Fuzzy sets, natural language computations and risk analysis. Philadelphia: Computer Science Press.
Shalkoff, R. J. (1997). Artificial neural networks. New York, NY: McGraw-Hill.
Van Westen, C. J., Van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation - Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167-184.
Wang, L. J., Guo, M., Sawada, M. K., Lin, J., & Zhang, J. (2015). Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena, 135, 271-282.
Wang, X., & Niu, R. (2009). Spatial forecast of landslides in three gorges based on spatial data mining. Sensors, 9, 2035–2061.