آدابی، م. ح.، 1383. ژئوشیمی رسوبی. انتشارات آرین زمین، چاپ اول، 448 ص.
اژدری، ا.، نظری، ح.، آقانباتی، ع.، 1385. نقشه زمینشناسی رباط خان. مقیاس 1:100000. سازمان زمینشناسی و اکتشافات معدنی کشور.
واعظ جوادی، ف.، 1394. معرفی ماکروفسیلهای گیاهی و زیست چینهنگاری برش کلشانه، شمال غرب طبس و تحلیل آب و هوای دیرینه. پژوهشهای چینه نگاری و رسوب شناسی، (4) 61: 105ـ123.
Adabi, M.H., & Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran. Journal of Sedimentary Geology, 72: 253-267.
Adabi, M.H., Salehi, M.A., & Ghobeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Foemation), South-west Iran. Journal of Asian Earth Sciences, 39: 148-160.
Aghaei, A., Mahboubi, A., Moussavi Harami, R., Nadjafi, M., & Chakrapani, G.J., 2014. Carbonate diagenesis of the upper Jurassic successions in the west of Binalud: Eastern Alborz (NE Iran).
Journal of the Geological Society of India, 83: 311-328.
Badihagh, M.T., Sajjadi, F., Farmani, T., & Uhl, D., 2019. Middle Jurassic palaeoenvironment and palaeobiogeography of the Tabas Block, Central Iran: palynological and palaeobotanical investigations. Palaeobiodiversity and Palaeoenvironments, 99 (3): 379-399.
Barrier, E., & Vrielynck, B., 2008. Palaeotectonic maps of the Middle East - tectono sedimentary - palinsspastic maps from the Late Norian to Pliocene. Paris (Commission for the Geological Map of the World; CGMW/CCGM).
Bathurst, R.G.C., 1972. Carbonate Sediments and their Diagenesis, Developments in Sedimentology. Elsevier, Amsterdam, 658 p.
Boggs, S.J.R., & Krinsley, D., 2006. Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, 177 p.
Brand, U., & Veizer, J., 1980. Chemical diagenesis of the multi component carbonate system-1: trace elements. Journal of Sedimentary Petrology, 50: 1219-1236.
Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, 36: 491-505.
Flugel, E., 2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer- Berlin, 984 p.
Fu, Q., Hu, S., Xu, Z., Zhao, W., Shi, S., & Zeng, H., 2020. Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi - Gaoshiti area, Sichuan Basin, southwestern China. Marine and Petroleum Geology, 117: 104318.
Garzanti, E., Andò, S., Limonta, M., Fielding, L., & Najman, Y., 2018. Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth Science Reviews, 185: 122-139.
Halley, R.B., & Harris, P.M., 1979. Fresh water cementation of a 1,000-year-old oolite. Journal of Sedimentary Petrology, 49: 969-988.
Higgins, J.A., Blättler, C.L., Lundstrom, E.A., Santiago-Ramos, D.P., Akhtar, A.A., Crüger Ahm, A.S., Bialik, O., Holmden, C., Bradbury, H., Murray, S.T., & Swart, P.K., 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534.
Jones, D.S., Brothers, R.W., Crüger Ahm, A.S., Slater, N., Higgins, J. H., & Fike, D. A., 2020. Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates. Geology, 48 (2): 194-199.
Jørgensen, B.B., 1977. Bacterial sulfate reduction within reduced micro-niches of oxidised marine sediments. Marine Biology, 41: 7-17.
Knoerich, A.C., & Mutti, M., 2006. Missing aragonitic biota and the diagenetic evolution of heterozoan carbonates: A case study from the Oligo-Miocene of the central Mediterranean. Journal of Sedimentary Research, 76 (5): 871-888.
Koch, R., & Ogorelec, B. 1990. Biogenic Constituents, Cement types and sedimentary fabrics. In: Heling, D., Rothe, P., Förstner, U., & Stoffers, P., (eds.), Sediments and Environmental Geochemistry: Selected Aspects and Case Histories. Springer, Berlin, Heidelberg, 95-123.
Koch, R., Bucur, L.I., Kirmaci, M.Z., Eren, M., & Tasli, K., 2008. Upper Jurassic and Lower Cretaceous carbonate rocks of the Berdiga Limestone: Sedimentation on an onbound platform with volcanic and episodic siliciclastic influx. Biostratigraphy, facies and diagenesis (Kircaova, Kale-Gümü¸shane area; NE-Turkey). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 247 (1): 23-61.
Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to paleokarst. In: James, N.P., & Choquette, P.W., (eds.), Paleokarst. Springer-Verlag, New York, 58-80.
Longman, M.W., 1980. Carbonate diagenetic textures from nearsurface diagenetic environments. American Association of Petroleum Geology Bulletin, 64: 461-487.
Machel, H.G., 2000. Application of cathodoluminescence to carbonate diagenesis. In: Pagel, M., Barbin, V., Blanc, P., & Ohnenstetter, D., (eds.), Cathodoluminescence in Geosciences. Springer-Verlag, Berlin, 271-301.
Moore, C.H., & Wade, W.J., 2013. Carbonate Reservoirs, Porosity and Diagenesis in a Sequence Stratigraphic Framework (2nd edition). Developments in Sedimentology, Elsevier, New York, 347 p.
Morad, S., Ketzer, J.M., & De Ros, L.F., 2013. Linking Diagenesis to Sequence Stratigraphy: An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution. In: Morad, S., Ketzer, J.M., & De Ros, L.F., (eds.), Linking Diagenesis to Sequence Stratigraphy. Wiely Blackwell, 522 p.
Mucci, A., 1988. Manganese uptake during calcite precipitation from seawater: conditions leading to the formation of a pseudokatnahorite. Geochimica et Cosmochimica Acta, 52: 1859-1868.
Nader, F.H., 2017. Multi-Scale Quantitative Diagenesis and Impacts on Heterogeneity of Carbonate Reservoir Rocks. Springer International Publishing, 146 p.
Nascimento, G.S., Eglinton, T.I., Haghipour, N., Albuquerque, A.L., Bahniuk, A., McKenzie, J.A., & Vasconcelos, C., 2019. Oceanographic and sedimentological influences on carbonate geochemistry and mineralogy in hypersaline coastal lagoons, Rio de Janeiro state, Brazil. Limnology and Oceanography, 64 (6): 2605-2620.
Oliveira, R.S., & Truckenbrodt, W., 2019. Provenance and diagenesis of Guamá Sandstone, northeastern Pará, Brazil: A Silurian link between the Amazonas and Parnaíba basins. Journal of South American Earth Sciences, 90: 265-281.
Oti, M., & Müller, G., 1985. Textural and mineralogical changes in coralline algae during meteoric diagenesis: an experimental approach. Neues Jahrbuch für Mineralogie, Abhandlungen, 151 (2): 163-195.
Paris, G., Bartolini, A., Donnadieu, Y., Beaumont, V., & Gaillardet, J., 2010. Investigating boron isotopes in a middle Jurassic micritic sequence: Primary vs. diagenetic signal. Chemical Geology, 275: 117-126.
Pingitore, N.E., 1978. The behavior of Zn and Mn during carbonate diagenesis theory and application. Journal of Petroleum Geology, 48: 799-814.
Pingitore, N.E., Eastman, M.P., Sandidge M., Oden, K., & Freiha, B., 1988. The coprecipitation of manganese (ІІ) with calcite, an experimental study. Marine Chemistry, 25 (2): 107-120.
Rao, C.P., & Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103: 249-272.
Rao, C.P., & Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia. Carbonates and Evaporites, 10: 114-123.
Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6: 83-106.
Ruttner, A., Nabavi, M.H., Hajian, J., Aghanabati, A., 1994. Geological map of Shirgesht, scale 1:100,000. Geological Survey of Iran.
Sahraeyan, M., Bahrami, M., Hooshmand, M., Ghazi, S., & Al-Juboury, A.I., 2013. Sedimentary facies and diagenetic features of the Early Cretaceous Fahliyan Formation in the Zagros Fold-Thrust Belt, Iran. Journal of African Earth Sciences, 87: 59-70.
Sanders, D., 2001. Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): implications fortaphonomy in tropical, shallow subtidal arbonate environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 168: 39-74.
Scholle, P.A., & Ulmer Scholle, D.S., 2006. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geology, Tulasa, 459 p.
Schülke, I., & Popp, A., 2005. Microfacies development, sea-level change, and conodont stratigraphy of Famennian mid-to deep platform deposits of the Beringhauser Tunnel section (Rheinisches Schiefergebirge, Germany). Facies, 50: 647-664.
Sengör, A.M.C., 1990. A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society of London, Special Publications, 49 (1): 797-831.
Seyed-Emami, K., Fürsich, F.T., & Wilmsen, M., 2004. Documentation and significance of tectonic events in the Northern Tabas block (East-Central Iran) during the Middle and Late Jurassic. RivistaItaliana di Paleontologia e Stratigrafia, 110 (1): 163-171.
Shen, A., Hu, A., Pan, L., & She, M., 2017. Origin and distribution of grain dolostone reservoirs in the Cambrian Longwangmiao Formation, Sichuan Basin, China. Acta Geologica Sinica, English Edition, 91 (1): 204-218.
Steuber, T., & Veizer, J., 2002. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology, 30 (12): 1123-1126.
Stocklin, J., Eftekhar-Nezhad, J., & Hushmand-Zadeh, A., 1965. Geology of the Shotori Range (Tabas area, East Iran). Geological Survey of Iran, 3: 69 p.
Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62: 1233-1304.
Tribovillard, N., Sansjofre, P., Ader, M., Trentesaux, A., Averbuch, O., & Barbecot, F., 2012. Early diagenetic carbonate bed formation at the sediment–water interface triggered by synsedimentary faults. Chemical Geology, 300: 1-13.
Trombetta, M.C., Guadagnin, F., Kumaira, S., Caron, F., & Gonçalves, G., 2019. Composition and diagenesis of Neoproterozoic Guaritas Group sandstones in the Minas do Camaquã fault zone, Camaquã Basin. Journal of South American Earth Sciences, 90: 1-11.
Tucker, M.E., & Wright, V.P., 1990. Carbonate sedimentology. Blackwell, Oxford, 482 p.
Veizer, J., & Demovic, R., 1973. Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequences of the western Carpathians. Journal of Sedimentary Research, 43 (1): 258-271.
Wierzbowski, H., & Joachimiski, M., 2007. Reconstrnction of late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (Central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 523-540.
Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., & Majidifard, M.R., 2009. An overview of the stratigraphy and facies development of the Jurassic System on the Tabas Block, east-central Iran. In: Brunet, M.F., Wilmsen, M., & Granath, J.W., (eds.), South Caspian to Central Iran Basins. Geological Society of London, Special Publications, 312 (1): 323-343.
Wilson, J.L., 1975. Carbonate facies in geologic history. Springer, New York, 471 p.
Winefield, P.R., Nelsion, C.S., & Hodder, A.P.W., 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry: a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, 11: 19-31.
Yahya Sheibani, V., Moussavi-Harami, R., Mahboubi, A., & Khanehbad, M., 2020. Depositional environment and sequence stratigraphy of siliciclastic - carbonate deposits of Parvadeh Formation (Middle Jurassic) in Tabas block, East Central of Iran. Geopersia, 10 (2): 305-332.