1. Abramowicz W., "Thin-walled structures as impact energy absorbers", Thin-Walled Structures, vol. 41, Issue 2–3, pp. 91-107 (2003).
2. Langseth M., Hopperstad O.S., Berstad T., "Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity", International Journal of Impact Engineering, vol. 22, Issue 9–10, pp. 829-854 (1999).
3. Reyes A., Langseth M., Hopperstad O.S., "Square aluminum tubes subjected to oblique loading", International Journal of Impact Engineering, vol. 28, Issue 10, pp. 1077-1106 (2003).
4. Tang Z., Liu S., Zhang Z., "Energy absorption properties of non-convex multi-corner thin-walled columns", Thin-Walled Structures, vol. 51, Issue 1, pp. 112-120 (2012).
5. Yamashita M., Kenmotsu H., Hattori T., "Dynamic axial compression of aluminum hollow tubes with hat cross-section and buckling initiator using inertia force during impact", Thin-Walled Structures, vol. 50, Issue 1, pp. 37-44 (2012).
6. Jones N., "Structural Impact", Cambridge University Press (1989).
7. Cheng Q. et al., "Energy absorption of aluminum foam filled braided stainless steel tubes under quasi-static tensile loading conditions", International Journal of Mechanical Sciences, vol. 48, Issue 11, pp. 1223-1233 (2006).
8. Ashby M.F. et al., "Metal Foams, A design guide", Butterworth Heinmann (2000).
9. Najafi A., Rais-Rohani M., "Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes", Thin-Walled Structures, vol. 49, Issue 1, pp. 1-12 (2011).
10. Reyes A., Hopperstad O.S., Langseth M., "Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study", International Journal of Solids and Structures, vol. 41, Issue 5–6, pp. 1645-1675 (2004).
11. Zarei H.R., Kröger M., "Bending behavior of empty and foam-filled beams: Structural optimization", International Journal of Impact Engineering, vol. 35, Issue 6, pp. 521-529 (2008).
12. Zarei H.R., Kröger M., "Optimization of the foam-filled aluminum tubes for crush box application", Thin-Walled Structures, vol. 46, Issue 2, pp. 214-221 (2008).
13. Kavi H., Toksoy A.K., Guden M., "Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient", Materials & Design, vol. 27, Issue 4, pp. 263-269 (2006).
14. Santosa S., Wierzbicki T., "Crash behavior of box columns filled with aluminum honeycomb or foam", Computers & Structures, vol. 68, Issue 4, pp. 343-367 (1998).
15. Santosa S.P. et al., "Experimental and numerical studies of foam flled sections", International Journal of Impact Engineering, vol. 24, pp. 504-534 (2000).
16. Santosa S.P. et al., "Experimental and numerical studies of foam-filled sections", International Journal of Impact Engineering, vol. 24, Issue 5, pp. 509-534 (2000).
17. Seitzberger M. et al., "Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam", International Journal of Solids and Structures, vol. 37, Issue 30, pp. 4125-4147 (2000).
18. Zhang C.-j., Feng Y., Zhang X.-b., "Mechanical properties and energy absorption properties of aluminum foam-filled square tubes", Transactions of Nonferrous Metals Society of China, vol. 20, Issue 8, pp. 1380-1386 (2010).
19. Hanssen A.G., Langseth M., Hopperstad O.S., "Static and dynamic crushing of square aluminium extrusions with aluminium foam filler", International Journal of Impact Engineering, vol. 24, pp. 347-383 (2000).
20. Britan A. et al., "The effect of fine particles on the drainage and coarsening of foam", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 344, Issue 1–3, pp. 15-23 (2009).
21. Deqing W., Ziyuan S., "Effect of ceramic particles on cell size and wall thickness of aluminum foam", Materials Science and Engineering: A, vol. 361, Issue 1–2, pp. 45-49 (2003).
22. Kennedy A.R., Asavavisitchai S., "Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams", Scripta Materialia, vol. 50, Issue 1, pp. 115-119 (2004).
23. Esmaeelzadeh S., Simchi A., Lehmhus D., "Effect of ceramic particle addition on the foaming behavior, cell structure and mechanical properties of P/M AlSi7 foam", Materials Science and Engineering: A, vol. 424, Issue 1-2, pp. 290-299, (2006).
24. Gergely V., Clyne T.W., "Drainage in standing liquid metal foams: modelling and experimental observations", Acta Materialia, vol. 52, Issue 10, pp. 3047-3058 (2004).
25. Mondolfo L.F., "Aluminum alloys: structure and properties", London: Butterworths (1976).
26. Yi J.Z. et al., "Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6)", Materials Science and Engineering: A, vol. 386, pp. 396–407 (2004).
27. Baumgärtner F., Duarte I., Banhart J., "Industrialization of Powder Compact Foaming Process", Advanced Engineering Materials, vol. 2, Issue 4, pp. 168-174 (2000).
28. خواجهعلی م.ج.، "ساخت قوطی های فومی تو پر و بررسی پارامترهای موثر بر جذب انرژی آنها"، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر (1390).
29. Gupta S.P., "Intermetallic compound formation in Fe–Al–Si ternary system: Part I", Materials Characterization, vol. 49, Issue 4, pp. 269-291 (2002).
30. Maitra T., Gupta S.P., "Intermetallic compound formation in Fe–Al–Si ternary system: Part II", Materials Characterization, vol. 49, Issue 4, pp. 293-311 (2002).
31. Mukherjee M., et al., "The effect of cooling rate on the structure and properties of closed-cell aluminium foams", Acta Materialia, vol. 58, Issue 15, pp. 5031-5042 (2010).
32. Alavi Nia A., Haddad Hamedani J., "Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries", Thin-Walled Structures, vol. 48, Issue 12, pp. 946-954 (2010).
33. Raj R.E., Daniel B.S.S., "Structural and compressive property correlation of closed-cell aluminum foam", Journal of Alloys and Compounds, vol. 467, Issue 1–2, pp. 550-556 (2009).