اصغری سراسکانرود، ص؛ زینالی، ب؛ 1393. تحلیل و پهنهبندی فراوانی فصلی توفانهای گردوغباری ایران بهمنظور کاهش مخاطرات. دانش مخاطرات. شماره 2. 217-239.
بابایی فینی، ا. صفرراد، ط؛ کریمی، م؛ 1395. تحلیل و شناسایی الگوهای همدیدی توفانهای گردوغبار غرب ایران. جغرافیا و مخاطرات محیطی. ش 17. صص. 105-120
باعقیده، م؛ احمدی، ح؛ 1393. تحلیل مخاطره گرد و غبار و روند تغییرات آن در غرب و جنوب غرب ایران. فصلنامه امداد و نجات، شماره 22. تابستان 1393. ص 43-60.
خوش اخلاق، ف؛ نجفی، م. س؛ صمدی، م؛ 1391. واکاوی همدید رخداد گردوغبار بهاره در غرب ایران. پژوهشهای جغرافیای طبیعی. ش 80: 99-124
مشایخی، ر؛ ایران نژاد، پ؛ علی اکبری بیدختی، ع؛ 1389. شبیهسازی هواویزها و واداشتهای تابشی ناشی از آنها با استفاده از مدل جفت شده هواویز HAM و مدل میان مقیاس پیش بینی وضع هوا WRF. فیزیک زمین و فضا. 36 (2): 91-107.
مفیدی، ع؛ جعفری، س؛ 1390. بررسی نقش گردش منطقهای جو بر روی خاورمیانه در وقوع توفانهای گردوغباری تابستانه در جنوب غرب ایران. مطالعات جغرافیایی مناطق خشک. شماره 5: 17-45.
Ackerman, S. A., & Chung, H. (1992). Radiative effects of airborne dust on regional energy budgets at the top of the atmosphere. Journal of Applied Meteorology, 31, 223–233.
Alizadeh-Choobari, O., Sturman, A., &Zawar-Reza, P. (2015). Global distribution of mineral dust and its impact on radiative fluxes as simulated by WRF-Chem. Meteorology and Atmospheric Physics, 127(6), 635–648.
Balkanski, Y., Schulz, M., Claquin, T., &Guibert, S. (2007). Reevaluationof mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmospheric Chemistry and Physics, 7,81–95.
Chen, F., &Dudhia, J. (2001). Coupling an advanced land surface/hydrology model with the Penn State/NCAR MM5 modeling system (Part I: Model description and implementation). Monthly Weather Review, 129, 569–585.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., …& Lin,S.J. (2001). Sources and distributions of dust aerosols simulatedwith the GOCART model.Journal ofGeophysical Research,106(D17), 20255–20273.
Ginoux, P., Prospero, J. M., Torres, O., & Chin, M. (2004(. Long-termsimulation of global dust distribution with the GOCART model:Correlation with North Atlantic Oscillation. Environmental ModelSoftware, 19(2),113–128.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost G., …& Eder, B. (2005). Fully coupled online chemistry within the WRF model. Atmospheric Environment, 39, 6957–6975.
Han, Z., Li, J., Guo, W., Xiong, Z., & Zhang, W. (2013). A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model. Atmospheric Environment, 68, 54–63.
Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N., …&Hirst, E. (2003). Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum.Journal ofGeophysical Research, 108 (D 18),doi:10.1029/2002JD002687.
Hong, S. Y. (2010). A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society, 136(651), 1481–1496.
Huang, J. P., Minnis, P., Yan, H., Yi, Y., Chen, B., …& Ayers, J. K. (2010). Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmospheric Chemistry and Physics, 10, 6863–6872.
Huang, J., Wang, T., Wang, W., Li, Z., & Yan, H. (2014). Climate effects of dust aerosols over East Asian arid and semiarid regions, semiarid regions.Journal ofGeophysical Research, 119 (19),11398-11416.
Janjic, Z.I. (2001) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note, 437: 61 p.
Li, Z.(2004). Observation, theory and modeling of atmospheric variability. AEROSOLS AND CLIMATE: A PERSPECTIVE OVER EAST ASIA, World Scientific Series on Asia-Pacific Weather and Climate, 3, 501-525.
Lin, Y. L., Farley, R.D., & Orville H. D. (1983). Bulk parameterization of the snow field in a cloud model.Journal of Applied Meteorology and Climatology, 22, 1065–1092.
Mallet, M., Tulet,P., Serc, D., Solmon, F., Dubovik, O., …&Thouron, O. (2009). Impact of dust aerosols on the radiative budget, surface heat fluxes,heating rate profiles and convective activity over West Africaduring March 2006. Atmospheric Chemistry and Physics, 9, 7143–7160.
Miller, R. L., Perlwitz, J., &Tegen, I. (2004). Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. Journal of Geophysical Research,109 (D24), DOI: 10.1029/2004JD004912.
Nazrul Islam, M.,&Almazroui, M. (2012). Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: A regional climate model study. Climate Dynamics, 39, 2239–2250.
Penner, J. E. (2001). Aerosols: Their direct and indirect effects in climate change 2001. The Scientific Basis, Contribution of Working Group I to IPCC, IPCC, pp. 291–336, Cambridge Univ. Press, Cambridge, U. K., and New York.
Perez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., &Ozsoy, E. (2006). Interactive dust-radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research, 111, 16206, doi: 10.1029/2005JD006717.
Prakash, P. J., Stenchikov, G., Kalenderski, S., Osipov, S., &Bangalath, H. (2015). The impact of dust storms on the Arabian peninsula and the Red Sea, Atmospheric Chemistry and Physics, 15, 199–222.
Satheesh, S. K., Krishna, M. K., Kaufman, Y. J., &Takemura, T. (2006). Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea. Meteorology and Atmospheric Physics, 91, 45–62.
Shell,K. M., & Somerville, R. C. J. (2007). Direct radiative effect of mineraldust and volcanic aerosols in a simple aerosol climate mode. Journal of Geophysical Research, 112,D03206, doi:10.1029/2006JD007197.
Shi, G., Wang, H., Wang, B., Li, W., Gong, S., & Zhao, T. (2005). Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. Journal of the Meteorological Society of Japan, 83, 333–346.
Solmon, F., Mallet,M., Elguindi, N., Giorgi, F., Zakey, A., &Konare, A. (2008). Dustaerosol impact on regional precipitation over western Africa,mechanisms and sensitivity to absorption properties. Geophysical Research Letters, 35(L24),doi:10.1029/2008GL035900.
Stier, P., Seinfeld, J. H., Kinne, S., & Boucher, O. (2007). Aerosol absorption and radiative forcing. Atmos. Chem. Phys., 7, 5237–5261.
Tegen, I., &Schepanski, K. (2009). The global distribution of mineral dust. Earth and Environmental Science, 7(1),1-6.
Wild, O., Zhu, X., & Prather, M. J. (2009). Fast-J: Accurate simulation of in- and below cloud photolysis in tropospheric chemical models. Atmospheric Chemistry and Physics,37, 245–282.
Yoshioka, M., Mahowald, N. M., Conley, A. J., Collins, W. D., Fillmore, D. W., …& Coleman, D. B. (2007). Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. Journal of Climaye, 20, 1445−1467.
Yue, X., Wang, H., Liao, H., & Fan, K. (2010). Simulation of dust aerosol radiative feedback using the GMOD: 2. Dust-climate interactions. Journal of Geophysical Research, 115,(D04), doi:10.1029/2009JD012063.
Zhang J., & Christopher, S. A. (2003). Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra. Geophysical Research Letters, 30 (23), doi:10.1029/2003GL018479.