1. Balsari, P., E. Gil, P. Marucco, M. Gallart, C. Bozzer, C. Llop, and M. Tamagnone. 2014. Study and development of a test methodology to assess potential drift generated by air- assisted sprayers. DiSAFA Crop protection Technology (Italy) and Politechnic University of Catalonia – DEAB (Spain): 9.
2. Balsari, P., P. Marucco, and M. Tamagnone. 2007. A test bench for the classification of boom sprayers according to drift risk.Crop protection. 26: 1482-1489.
3. Czaczyk, Z., G. Kruger, and A. Hewitt. 2012. Droplet size classification of air induction flat fan nozzles. Journal of plant protection research 52 (4): 415-420.
4. Daneshjoo, M. A., M. H. Abbaspour-Fard, M. H. Aghkhani, and M. Ariyan. 2009. Software design and evaluation of appropriate Mass Density Measurement and droplet size in Sprayer. Journal of Plant Protection (Agricultural Science and Technology). University of Mashhad. 22 (2): 171- 181. (In Farsi).
5. Dorr, G. J., A. J. Hewitt, S. W. Adkins, J. Hanan, H. Zhang, and B. Noller. 2013. A comparison of initial spray characteristics produced by agricultural nozzles.Crop production 53: 109-117.
6. Douzals, J. P., C. Sinfort, and E. Cotteux. 2010. Spraying quality assessment of a mist blower used on banana crops. International conference on agricultural engineering- Agricultural Engineering: 1-11.
7. Gil, E., P. Balsari, M. Gallart, J. Liorens, P. Marucco, P. G. Andersen, X. Fabregas, and J. Liop. 2015. Determination of drift potentional of different flat fan nozzles on a boom sprayer using a test bench. Crop protection 56: 58-68.
8. Gil, E., M. Gallart, J. Llorens, and J. Llop. 2012. Determination of Drift Potential Value (DPV) for different flat fan nozzles using a horizontal drift test bench. Department of agro food engineering and biotechnology 8: 6.
9. Gil, E., J. Llorens, J. Llop, X. Fabregas, and M. Gallart. 2013. Use of a terrestrial lidar sensor for drift detection in vineyard spraying. Sensors. 13: 516- 534.
10. Landers, A. and M. Farooq. 2004. Reducing Drift and Improving Deposition in Orchards. Cornell University, NYSAES, Geneva, NY 14456, USA: 380- 384.
11. Naseri, M., M. H. Abbaspour-Fard, H. Chaji, and A. Heidarzade. 2007. Effect of nozzle orifice diameter, pressure pump and forward speed tractor on the uniformity spraying in Turbo liner sprayer. The fifth national congress of agricultural machinery and mechanization of ferdowsi university of Mashhad: 9. (In Farsi).
12. Nuyttens, D., P. De Schampheleire Verboven, E. Brusselman, and D. Dekeyser. 2009. Droplet size and velocity characteristics of agricultural sprays. American society of agricultural and biological engineers (ASABE). 52 (5): 1471-1480.
13. Otsu, N. 1979. A threshold selection method from grey level histograms. Ieee transactions on systems, man and cybernetics. 9 (1): 62-66.
14. Peyman, L., Sh. A. abdollahpour, B. Rana bonab, M. Moghadam, and A. Mahmoudi. 2011. Evaluation of factors affecting on the uniform droplet size using standard cv. First National Congress of Science and New Technologies (the of Plant Protection) at Zanjan University: 4. (In Farsi).
15. Purhajy, F., and M. Mazaheri Tehrani. 2013. Study of image processing with the ImageJ software at the formulation sesame cream with soybean flour. Twenty-first National Congress of Food Science and Technology, University of Shiraz: 4. (In Farsi).
16. Safari, M., F. Amirsheghaghi, N. Loveymi, and H. Chagi. 2009. Assessment of common sprayer used in wheat fields. Karaj Agricultural Engineering Research Institute Publications 10 (4): 1-12. (In Farsi).
17. Wolf, T. E., R. Graver, K. Wallace, S. R. Shewchuk, and J. Maybank. 1993. Effect of protective shields on drift and deposition characteristics of field sprayers. Canadian journal of plant science 73: 1261-1993.