1. McGaughey, A.J.H. and Ward, C.A., "Droplet stability in a finite system: Consideration of the solid–vapor interface", Journal of applied physics, Vol. 93, No. 6, pp. 3619-3626, (2003).
2. Toxvaerd, S., "Molecular-dynamics simulation of homogeneous nucleation in the vapor phase", J. Chem. Phys., Vol. 115, pp. 8913-8920, (2001).
3. Rao, M. and Berne, B.J., "Nucleation in finite systems: Theory and computer simulation" Astrophysics and Space Science, Vol. 65, No. 1, pp. 39-46, (1979).
4. Reiss, H. and Koper, G.J.M., "The Kelvin Relation: Stability, Fluctuation, and Factors Involved in Measurement", J. Phys. Chem., Vol. 99, No. 19, pp. 7837–7844, (1995).
5. He, X. and Doolen G.D., "Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows", J. Stat. Phys., No. 107, pp. 309-328, (2002).
6. Zhang, J., Li, B. and Kwok, D.Y., "Mean-Field Free-Energy Approach to the Lattice Boltzmann Method for Liquid-Vapor and Solid-Fluid Interfaces", Phys. Rev. E, Vol. 69, 032602, (2004).
7. Lee, T. and Lin C.L., "Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change", Phys Rev E, Vol. 67, 056703, (2003).
8. Wolf-Gladrow, D.A., "Lattice-gas Cellular Automata and Lattice Boltzmann Models", Springer, Berlin, (2000).
9. Holdych, D. J., Rovas, D., Georgiadis, J. G. and Buckius, R. O., "An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models", Int. J. Mod. Phys. C 9, pp. 1393-1404 (1998)
10. Huang, H., Wang, L. and Lu, X., "Evaluation of three lattice Boltzmann models for multiphase flows in porous media", Computers and Mathematics with Applications, Vol. 61, pp. 3606–3617, (2011).
11. Amiri Rad, E., "Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation", Meccanica, Vol. 50, No. 4, pp. 995-1001, (2015).
12. Amiri Rad, E., "Coalescence of two at-rest equal-sized drops in static vapor of the same material: A lattice Boltzmann approach", Journal of Mechanical Science and Technology, Vol. 28, No. 9,
pp. 3597-3603, (2014).
13. Gunstensen, A.K., Rothman, D.H., Zaleski, S. and Zanetti, G., "Lattice Boltzmann model of immiscible fluids", Phys. Rev. A, Vol. 43, pp. 4320–4327, (1991).
14. Shan, X.W. and Chen H.D., "Lattice Boltzmann model for simulating flows with multiple phases and components", Phys. Rev. E, Vol. 47, pp. 1815–1819, (1993).
15. Shan, X.W. and Chen H.D.,"Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation", Phys. Rev. E, Vol. 49, pp. 2941-2948, (1994).
16. Swift, M.R., Osborn, W.R. and Yeomans, J.M., "Lattice Boltzmann simulation of nonideal fluids", Phys. Rev. Lett., Vol. 75, pp. 830–833, (1995).
17. Swift, M.R., Orlandini, E., Osborn, W.R. and Yeomans, J.M., "Lattice Boltzmann simulations of liquid–gas and binary fluid systems", Phys. Rev. E, Vol. 54, pp. 5041–5052, (1996).
18. Landau, L. D. and Lifshitz, E. M., "Statistical physics", Pergamon Press, (1958).
19. Jamet, D., Lebaigue, O., Coutris, N. and Delhaye, J.M.,"The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change", Journal of Computational Physics, Vol. 169, pp. 624–651, (2001).
20. Evans, R., "The nature of the liquid-vapour interface and other topics in the statistical mechanics of non - uniform, classical fluids", Adv. Phys., Vol. 28, pp. 143-200, (1979).
21. Amiri Rad, E., "Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann", Meccanica, Vol. 9, No. 6, pp. 1457-1467, (2014).
22. Khatavkar, V.V., Anderson, P.D. and Meijer, H.E.H., "On scaling of diffuse–interface models", Chemical Engineering Science, Vol. 61, pp. 2364 – 2378, (2006).