1. Gross, D. and Seelig, T., "Fracture Mechanic: With an introduction to Micromechanics", Springer-Verlag Berlin Heidelberg, Second edition, (2011).
2. Sun, C. and Jin, Z.-H., "Fracture Mechanics", Elsevier Science Publishing Co Inc, San Diego, United States, (2012).
3. Bui, H.D., "Fracture Mechanics: Inverse Problem and Solutions", Springer Netherlands, (2006).
4. میرزایی مجید، کریمی رضا، «تعیین سرعت رشد ترک در پره توربین گازی براساس مکانیک شکست»، مجلۀ فنی و مهندسی مدرس، جلد 6، صص 51-56، (زمستان 1380).
5. Lemaitre, J., "A continuous damage mechanics model for ductile fracture", Journal of Engineering Materials and Technology, Vol. 107, pp. 83-89, (1985).
6. Hoff, N., "The necking and the rupture of rods subjected to constant tensile loads", Journal of Applied Mechanics, Vol. 20, No. 1, pp. 105-108, (1953).
7. Kachanov, L.M., "Rupture time under creep conditions", International Journal of Fracture, No. 8, pp.
26–31, (1958).
8. Rice, J.R. and Tracy, D.M., "On the ductile enlargement of voids in triaxial stress fields", Journal of the Mechanics and Physics of Solids, Vol. 17, No. 3, pp. 201-217, (1969).
9. Wang, J. and Chow C.L., "Subcritical crack growth in ductile fracture with continuum", Engineering Fracture Mechanics, Vol. 33, No. 2, pp. 309-317, (1989).
10. Chandrakanth, S. and Pandey P.C., "An isotropic damage model for ductile", Engineering Fracture Mechanics, Vol. 50, No. 4, pp. 457-465, (1995).
11. Bonora, N., "A nonlinear CDM model for ductile failure", Engineering Fracture Mechanics, Vol. 58, No. 1/2, pp. 11–28, (1997).
12. Garrison, W.M. and Moody N.R., "Ductile fracture", Journal of Physics and Chemistry of Solids, Vol. 48, Issue 11, pp. 1035–1074, (1987).
13. Bonora, N., "On the effect of triaxial state of stress on ductility using nonlinear CDM model", International Journal of Fracture, Vol. 88, pp. 359–371, (1998).
14. Pardoen, T. and Hutchinson J.W., "An extended model for void growth and coalescence", Journal of the Mechanics and Physics of Solids, Vol. 48, pp. 2467–2512, (2000).
15. Bruunig, M., "Numerical analysis of anisotropic ductile continuum damage", Comput. Methods Appl. Mech. Eng., Vol. 192, pp. 2949–2976, (2003).
16. Bonora, N. and Milella, P.P., "Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage", International Journal of Impact Engineering, Vol. 26, pp. 35-64, (2001).
17. Milella, P.P., "Temperature and strain rate dependence of mechanical behavior of body-centered cubic structure materials", Proc. TMS Fall Meeting '98, Chicago, Illinois, (1998).
18. Benzerga, A. and Besson J., and Pineau, A. "Anisotropic ductile fracture, Part II: theory" Acta Materialia, Vol. 52, pp. 4639-4650, (2004).
19. Mashayekhi, M. and ZiaeiRad, S. "Identification and validation of a ductile damage model for A533 steel", Journal of Materials Processing Technology, Vol. 17, pp. 291-295, (2006).
20. Thakkar, B.K. and Pandey, P., "A high-order isotropic continuum damage", International Journal of Fracture, Vol. 16, pp. 403-426, (2007).
21. Pirondi, A., Bonora, N., Steglich, D., Brocks, W. and Hellmann, D., "Simulation of failure under cyclic plastic loading by damage models", International Journal of Plasticity, pp. 2146–2170, (2006).
22. Reddy, J.N., "An Introduction to the Finite Element Method", McGraw Hill Series in Mechanical Engineering, (2006).
23. Sehat, R., "study on aluminum damage using CDM theory", MSc. Thesis, Aerospace Research institute, Tehran, (2013).
24. ABAQUS analysis user manual 6.11.