رسولی، علیاکبر؛ 1387. مبانی سنجش از دور کاربردی با تأکید بر پردازش تصاویر ماهوارهای. انتشارات دانشگاه تبریز.
زاهدی، مجید؛ رسولی، علیاکبر؛ فرجی، عبدالله؛ 1388. تهیه اطلس اقلیمی آذربایجان. مجله جغرافیا و برنامهریزی، شماره 27، 215-230.
عالی محمود سراب، سجاد؛ فقهی، جهانگیر؛ جباریان امیری، بهمن؛ 1391. پیشبینی وقوع آتشسوزی در جنگلها و مراتع با استفاده از شبکه عصبی مصنوعی (مطالعهی موردی: جنگلهای منطقه زاگرس، شهرستان ایذه). اکولوژی کاربردی، شماره 1(2)، 75-85.
مهام، اکرم؛ ولی زاده کامران، خلیل؛ قهرمانی، محمد؛ 1390. ارزیابی روشهای مختلف زمینآمار جهت بررسی تغییرات منطقهای بارش در شمال غرب کشور و پیشنهاد بهترین مدل با استفاده از GIS. همایش ملی کاربرد مدلهای پیشرفته تحلیل فضایی (سنجش از دور و GIS) در آمایش سرزمین، یزد، دانشگاه آزاد اسلامی واحد یزد.
ولی زاده کامران، خلیل؛ 1392. برآورد تبخیر-تعرق پتانسیل در آذربایجان شرقی به روش استفنز با استفاده از GIS. مجله جغرافیا و برنامهریزی، شماره 18(49)، 317-334.
Adab H, Kanniah KD, Solaimani K., 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65(3): 1723-1743.
Anderson P, Dudik R, Ferrier M, Guisan S, Hijmans AJ, Huettmann R, Loiselle B., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2): 129-151.
Arnett JT, Coops NC, Daniels LD, fall RW., 2015. Detecting forest damage after a low-severity fire using remote sensing at multiple scales. International Journal of Applied Earth Observation and Geoinformation, 35: 239-246.
Arpaci A, Malowerschnig B, Sass O, Vacik H., 2014. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Journal of Applied Geography, 53: 258-270.
Balzter H, Gerard FF, George CT, Rowland CS, Jupp TE, McCallum I, Schmullius C., 2005. Impact of the Arctic Oscillation pattern on internal forest fire variability in Central Siberia. Geophysical Research Letters: 32(14).
Bui DT, Bui QT, Nguyen QP, Pradhan B, Nampak H, Trinh PT., 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233: 32-44.
Chen F, Du Y, Niu S, Zhao J., 2015. Modeling Forest Lightning Fire Occurrence in the Daxinganling Mountains of Northeastern China with MAXENT. Journal of Forest, 6: 1422-1438.
Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martin P, Vilar L, Martinez
J, Martin S, Ibarra P, de la Riva J, Baeza J, Rodriguez F, Molina JR, Herrera
MA, Zamora R., 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221: 46-58.
Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J., 2008. The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography 17: 715–723.
Dong XU, Li-min D, Guo-fan S, Lei T, Hui W., 2005. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, and China. Journal of forestry research, 16(3): 169-174.
Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43–57.
Erten E, Kurgun V, Musaoglu N., 2004. Forest fire risk zone mapping from satellite imagery and GIS: a case study. XXth Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), July, Istanbul, Turkey, Proceeding, 222-230.
Eskandari S, Chuvieco E., 2015. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42: 57-64.
Ferrarini A., 2012. Why not use niche modelling for computing risk of wildfire ignition and Spreading? Environmental Skeptics and Critics, 1(4): 56-60.
Giovanelli JG, de Siqueira MF, Haddad CF, Alexandrino J., 2010. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221(2): 215-224.
Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A., 2006. Fire risk assessment using satellite data. Advances in Space research, 37(4): 741-746.
Holsinger L, Parks SA, Miller C., 2016. Weather, fuels, and topography impede
wildland fire spread in western US landscapes. Forest Ecology and Management, 380: 59–69.
Jaiswal RK, Mukherjee S, Raju KD, Saxena R., 2002. Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1): 1-10.
Leblon B, Garcia PAF, Oldford S, Maclean DA, Flannigan M., 2007. Using cumulative NOAA-AVHRR spectral indices for estimating fire danger codes in northern boreal forests. International journal of applied earth observation and Geoinformation, 9(3): 335-342.
Maeda EE, Arcoverde GF, Pellikka PK, Shimabukuro YE., 2011. Fire risk assessment in the Brazilian amazon using MODIS imagery and change vector analysis. Applied Geography, 31: 76-84.
Martinez J, Vega-Garcia C, Chuvieco E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. Journal of environmental management, 90(2): 1241-1252.
Massada A, Syphard AD, Stewart S., 2012. Wildfire ignition-distribution modelling: a comparative study in the Huron e Manistee National Forest. International Journal of Wildfire, 22(2): 174-183.
Nieto H, Aguado I, Garcia M, Chuvieco E., 2012. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agricultural and forest meteorology, 162: 35-43.
Parisien MA, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, Moritz MA., 2012. Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21(4): 313-327.
Phillips SJ, Anderson RP, Schapire RE., 2006. Maximum k8entropy modeling of species geographic distribution. Ecological Modelling, 190: 231–259.
Pourtaghi ZS, Pourghasemi HR, Rossi M., 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences, 73(4): 1515-1533.
Renard Q, Pelissier R, Ramesh BR, Kodandapani N., 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International journal of Wildland Fire, 21: 368-379.
Rodrigues M, Jimenez A, de la Riva J., 2016. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Natural Hazards, 84(3): 2049-2070.
Rundel PW, King JA., 2001. Ecosystem processes and dynamics in the urban/wildland interface of Southern. California. Journal of Mediterranean Ecology, 2: 209-220.
Salis M, Ager AA, Finney MA, Arca B, Spano D., 2014. Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Natural Hazards, 71(3): 1389-1418.
Shao Y, Lunetta RS., 2012. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70: 78-87.
Süzen ML, Doyuran V., 2004. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology, 45(5): 665-679.
Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK., 2008. Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildfire, 17: 602-613.
Tanskanen H, Venäläinen A, Puttonen P, Granström A., 2005. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research, 35(2): 410-420.
Thomason AC., 2015. Modeling Burn Probability: A MaxEnt Approach to Estimating California’s Wildfire Potential. (Doctoral dissertation, University of Southern California).
Vadrevu KP, Eaturu A, Badarinath KV., 2010. Fire risk evaluation using multicriteria analysis—a case study. Environmental monitoring and assessment, 166(1-4): 223-239.
Yin H, Kong FH, Li XZ., 2004. RS and GIS based forest fire zone mapping in Dahinggan Mountains. Chinese Geographical Science, 14 (3): 251- 25.