1. Eckhoff, R., “Dust explosions in the process industries: identification, assessment and control of dust hazards”, Gulf professional publishing, pp. 1-3, (2003).
2. Han, O.-S., Yashima, M., Matsuda, T., Matsui , H., Miyake, A. and Ogawa, T., “Behavior of flames propagating through lycopodium dust clouds in a vertical duct”, J. Loss Prev. Process Ind., Vol. 13, No. 6, pp. 449–457, (2000).
3. Cashdollar, K.L., “Overview of dust explosibility characteristics”, J. Loss Prev. Process Ind., Vol. 13, No. 3, pp. 183–199, (2000).
4. Hanai, H., Kobayashi, H. and Niioka, T., “A numerical study of pulsating flame propagation in mixtures of gas and particles”, Proc. Combust. Inst., Vol. 28, No. 1, pp. 815–822, (2000).
5. Liu, Y., Sun, J. and Chen, D., “Flame propagation in hybrid mixture of coal dust and methane,” J. Loss Prev. Process Ind., Vol. 20, No. 4, pp. 691–697, (2007).
6. Proust, C., “Flame propagation and combustion in some dust-air mixtures”, J. Loss Prev. Process Ind., Vol. 19, No. 1, pp. 89–100, (2006).
7. Seshadri, K., Berlad, A.L. and Tangirala, V., “The structure of premixed particle-cloud flames,” Combust. Flame, Vol. 89, No. 3, pp. 333–342, (1992).
8. Bidabadi, M. and Rahbari, A., “Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles”, Combust. Explos. Shock Waves, Vol. 45, No. 3, pp. 278–285, (2009).
9. Bidabadi M. and Rahbari, A., “Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles”, J. Mech. Sci. Technol., Vol. 23, No. 9, pp. 2417–2423, (2009).
10. Haghiri, A. and Bidabadi, M., “Modeling of laminar flame propagation through organic dust cloud with thermal radiation effect”, Int. J. Therm. Sci., Vol. 49, No. 8, pp. 1446–1456, (2010).
11. Daou, R., Daou, J. and Dold, J., “Effect of heat-loss on flame-edges in a premixed counterflow,” Combust. Theory Model., Vol. 7, No. 2, pp. 221–242, (2003).
12. فرشادی، سیروس، “احتراق جریان متقابل ابرذرات ارگانیک”، پایاننامه کارشناسی ارشد مهندسی مکانیک (تبدیل انرژی)، دانشکدۀ مهندسی مکانیک، دانشگاه علم و صنعت ایران، (1392).
13. Linan, A., “The asymptotic structure of counterflow diffusion flames for large activation energies,” Acta Astronaut., Vol. 1, No. 7, pp. 1007–1039, (1974).
14. Seshadri, K. and Trevino, C., “The influence of the Lewis numbers of the reactants on the asymptotic structure of counterflow and stagnant diffusion flames”, Combust. Sci. Technol., Vol. 64, No. 4–6, pp. 243–261, (1989).
15. Dvorjetski, A. and Greenberg, J.B., “Influence of non-unity Lewis numbers and droplet loading on the extinction of counter-flow spray diffusion flames”, Proc. Combust. Inst., Vol. 28, No. 1, pp. 1047–1054, (2000).
16. Wichman, I.S. and Yang, M., “Double-spray counterflow diffusion flame model”, Strain, Vol. 2, p. 2, (1998).
17. Daou, R., Daou, J. and Dold, J., “The effect of heat loss on flame edges in a non-premixed counterflow within a thermo-diffusive model”, Combust. Theory Model., Vol. 8, No. 4, pp. 683–699, (2004).
18. Fendell, F.E., “Ignition and extinction in combustion of initially unmixed reactants”, J. Fluid Mech., Vol. 21, No. 02, pp. 281–303, (1965).
19. Abramowitz, M. and Stegun, I.A., “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing.,” (1972).
20. Burden, R.L. and Faires, J.D., “Numerical analysis. 2001”, Brooks/Cole, USA, (2001).
21. Rockwell, S.R. and Rangwala, A.S., “Modeling of dust air flames”, Fire Saf J., Vol. 59, pp. 22–29, (2013)