تعداد نشریات | 50 |
تعداد شمارهها | 1,875 |
تعداد مقالات | 19,726 |
تعداد مشاهده مقاله | 12,311,387 |
تعداد دریافت فایل اصل مقاله | 7,677,557 |
تأثیر استفاده از نانوسیلیس بر بهبود خصوصیات مهندسی خاکهای مارنی اصلاحشده با آهک | ||
مهندسی عمران فردوسی | ||
مقاله 3، دوره 32، شماره 1 - شماره پیاپی 25، فروردین 1398، صفحه 35-54 اصل مقاله (1.12 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/civil.v32i1.73803 | ||
نویسندگان | ||
محمد امیری* ؛ عادل عساکره؛ امین حسین فرخدل | ||
هرمزگان | ||
چکیده | ||
خاکهای مارنی از خاکهای مسئلهدار هستند که در صورت قرار گرفتن در معرض جریان آب بهسهولت فرسایش مییابند و مشکلاتی را در پایداری بستر پروژههای عمرانی ایجاد مینمایند. یکی از روشهای اصلاح شیمیایی خاک استفاده از مواد افزودنی مانند آهک، سیمان و نانوذرات است. در پژوهش حاضر تأثیر افزودن نانوسیلیس بر عملکرد آهک در بهبود خصوصیات مهندسی خاکهای مارنی و تشکیل ترکیبات جدید ناشی از فرایند تثبیت بررسی شدهاست. در این راستا پس از تعیین خصوصیات ژئوتکنیکی خاک مارن، بهبود ویژگیهای مهندسی نمونههای تثبیتشده با درصدهای مختلف آهک شکفته و نانوسیلیس بعد از پایان دورۀ عملآوری از طریق انجام آزمایشهای مختلف مکانیکی (حدود اتربرگ، دانهبندی، رسوب و مقاومت فشاری محدودنشده (UCS)) و ریزساختاری (pH، پراش اشعۀ ایکس (XRD)) تجزیهوتحلیل شد. براساس نتایج پژوهش حاضر حضور نانوسیلیس در سیستم خاک مارنی- آهک، منجر به افزایش فعالیتهای پوزولانی و رشد نانوساختارهای هیدرات سیلیکات کلسیم (C-S-H) و هیدرات آلومینات کلسیم (C-A-H) و توزیع یکنواخت این نانوساختارها میشود. همچنین مقاومت فشاری نمونههای اصلاحشده با ترکیب نانوسیلیس و آهک متناسب با افزایش مادۀ افزودنی نانوسیلیس روند کاملاً صعودی دارد. براساس نتایج پژوهش حاضر خصوصیات مهندسی خاکهای مارنی در نمونۀ اصلاحشده با 6% آهک و 1% نانوسیلیس، میزان مقاومت فشاری در 7 روز اول به kg/cm2 45/18 افزایش یافته و نسبتبه نمونۀ مرجع مقاومت فشاری 18 برابر افزایش یافتهاست | ||
کلیدواژهها | ||
مارن؛ نانوسیلیس؛ مقاومت فشاری محدود نشده؛ C-S-H؛ XRD | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
1. Ouhadi, V. R., and Yong, R. N., "The Role of Clay Fractions of Marly Soils on their Post Stabilization Failure", J. Engineering Geology, Vol. 70, Pp. 365-375, (2003).
2. Oostwoud Wijdenes, D. J., Ergenzinger, P., "Erosion and Sediment Transport on Steep Marly Hillslopes", Draix, Haute-Provence, France: an experimental field study. J. Catena, Vol. 33, Pp. 179-200, (1998).
3. Ouhadi, V. R., Yong, R. N., "The Role of Clay Fractions of Marly Soils on their Post Stabilization Failure", Vol. 70, Pp. 365–375, (2003).
4. Rezaee, P., Zarezadeh. R., "Carbonate Marine Terraces of Qeshm Island, a Symbol of Sea Level Changes of the Persian Gulf in the Quaternary", Geosciences - Scientific Quarterly Journal, Vol. 23, Pp. 67-74, (2014).
5. KerstinElert, J., Miguel, A., Fernando, N., "Smectite Formation upon Lime Stabilization of Expansive Marls", Applied Clay Science, Pp. 29-36, (2018).
6. Majidi, A., Lashkaripour, G., Shoaei, Z., "Prediction of Swelling Potential of Marl Soils of Salt Lake Watershed Basin", Watershed Engineering and Management, Vol. 9, Pp. 292-307, (2017).
7. Lamas, F., Irigaray, C., Chacon, J., "Geotechnical Characterization of Carbonate Marls for Construction of Impermeable Dam Cores", Eng. Geol. Vol. 66, Pp. 283–294, (2002).
8. Ouhadi, V.R., "The Role of Marl Components and Ettringite on the Stability of Stabilized Marl", Ph.D thesis, Department of Civil Engineering and applied mechanics, McGill University, Montreal, Canada, (1997).
9. Yong, R. N., and Ouhadi, V. R., "Experimental Study on Instability of Bases on Natural and Lime/cement- stabilized Clayey Soils", J. Applied Clay Science, Vol. 35, Pp. 238-249, (2007).
10. Ouhadi, V. R., Yong, R. N. and Mohamed, A. M. O., "Formation of Ettringite as a Swelling Mineral on Stabilized Marl Soil", Proceeding of the 1st conference on civil engineering by Iranian students in Canada, Montreal, Pp. 131-138, (1996).
11. Ouhadi, V. R., Yong, R. N., Amiri, M., Ouhadi, M. H., "Pozzolanic Consolidation of Stabilized Soft Clays", Appl. Clay Sci. Vol. 95, Pp. 111–118, (2014).
12. Al-Rawas, A. A., Hago, A.W., Al-Sarmi, H., "Effect of Lime, Cement and Sarooj (Artificial Pozzolan) on the Swelling Potential of an Expansive Soil from Oman", Building and Environment, 40 (5), Pp. 681–687, (2005).
13. Ouhadi, V. R., Amiri, M., "Dispersive sSoil Improvement with Lime, Special Attention to the Reduction of Peak Intensity of Clay Minerals in XRD Analysis", modares civil Engineering journal, Vol. 14, Pp. 13-25, (2014).
14. Richardson, I. G., "The Calcium Silicate Hydrates", Cem. Concr. Res. Vol. 38, Pp. 137–158, (2008).
15. Richardson, I. G., "Model Structures for C-(A)-S-H (I)", Acta Crystallographica Section B B70, Pp. 903–923, (2014).
16. Abdelzahergend, E. A., Mostafa, M. S., Ouf, Mokhtar, F. Elgendy, "Stabilization of Subgrade Pavement Layer Using Silica Fume and Nano Silica", International Journal of Scientific & Engineering Research, Vol. 7, Pp 35-45, (2016).
17. Goodarzi, A., Moradloo, A., "Effect of Curing Temperature and SiO2-nanoparticles on the Engineering Properties of Lime Treated Expansive Soil", Modares Civil Engineering Journal, Vol. 17, No. 3, Pp. 8-18, (2017). (In Persian)
18. Changizi, F., Haddad, A., "Strength Properties of Soft Clay Treated with Mixture of Nano-SiO2 and Recycled Polyesterfiber", Journal of Rock Mechanics and Geotechnical Engineering, No. 7, Pp. 367-378, (2015).
19. Ghasabkolaei, N., Janalizade, A., Roshan, N., Ghasemi, S. E., "Geotechnical properties of the Soils Modified whit Nanomaterials: A Comprehensive Review", No. 17, Pp. 639-650, (2017).
20. Fu, J. and Naguib, H. E., "Nanocomposite Foams Effect of Nanoclay on the Mechanical Properties of PMMA /Clay", Journal of Cellular Plastics, No. 42, Pp. 325, (2006).
21. Maubec, N., Deneele, D., Ouvrardb, G., "Influence of the Clay Type on the Strength Evolution of Lime Treated Material", Applied Clay Science, Vol. 137, Pp. 107-114, (2017).
22. American Society for Testing and Materials, "ASTM, 2014, American Society for Testing and Materials, ASTM, Annual Book of ASTM Standards", P.A., Philadelphia V.4, 08, (2014).
23. Cerato, A. B., Lutenegger, A. J., "Determination of Surface are of Fine-grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method", ASTM Geotechnical Testing Journal, Vol. 25, No. 3, Pp. 1–7, (2002).
24. Hesse, P. R., "A Textbook of Soil Chemical Analysis", William Clowes and Sons, 519p, (1971).
25. Ouhadi, V. R., Yong, R. N., "Experimental and Theoretical Evaluation of Impact of Clay Microstructure on the Quantitative Mineral Evaluation by XRD Analysis", Elsevier Appl. Clay Sci. J. 23. Pp 141, (2003).
26. Ouhadi, V. R., Amiri, M., Zangene, M., "Microstructural Assessment of Lime Consumption Rate and Pozzolanic Reaction Progress of a Lime-Stabilized Dispersive Soil", Modares Journal of Technical & Civil Engineering, Pp. 11-22, (2016).
27. Van Olphen, H., "An Introduction to Clay Colloid Chemistry", Wiley Interscience; Pp. 187, (1977). | ||
آمار تعداد مشاهده مقاله: 326 تعداد دریافت فایل اصل مقاله: 320 |