1.	Mroz, Z., and Zienkiewicz, O., "Uniform Formulation of Constitutive Equations for Clays and Sands" Mechanics of engineering materials, Vol. 12, Pp. 415-449, (1984). 
2.	Zienkiewicz, O., and Z. Mroz., "Generalized Plasticity Formulation and Applications to Geomechanics", Mechanics of engineering materials, Vol. 44, No. 3, Pp. 655-679, (1984). 
3.	Zienkiewicz, OC, Leung, KH, and Pastor, M., "Simple Model for Transient Soil Loading in Earthquake Analysis I Basic Model and its Application", Int  J  Num  Anal  Meth  Geomech, 9, Pp. 453-476, (1985).
4.	Pastor, M., Zienkiewicz, O., & Leung, K., "Simple Model for Transient Soil Loading in Earthquake Analysis. II. Non‐Associative Models for Sands", International journal for numerical and analytical methods in geomechanics, Vol. 9, No. 5, Pp. 477-498, (1985). 
5.	Pastor, M., & Zienkiewicz, O., "A Generalized Plasticity, Hierarchical Model for Sand under Monotonic and Cyclic Loading", Numerical Methods in Geomechanics, Pp. 131-150, (1986). 
6.	Pastor, M., Zienkiewicz, O., and Chan, A., "Generalized Plasticity and the Modelling of Soil Behavior" International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, No. 3, Pp. 151-190, (1990). 
7.	Pastor, M., Zienkiewicz, O., Xu, G., and Peraire, J., "Modeling of Sand Behavior: Cyclic Loading, Anisotropy and Localization" Modern Approaches to Plasticity, D. Kolymbas (ed.), Pp. 469-492, (1993).
8.	Bahda, F., Pastor, M., & Saitta, A., "A Double Hardening Model based on Generalized Plasticity and State Parameters for Cyclic Loading of Sands", Numerical models in Geomechanics. The Netherlands, Rotterdam, Pp. 33-38, (1997).
9.	Zhang, H., Heeres, O., De Borst, R., & Schrefler, B., "Implicit Integration of a Generalized Plasticity Constitutive Model for Partially Saturated Soil", Engineering Computations, Vol. 18, No. 1/2, Pp. 314-336, (2001). 
10.	Schrefler, B., Zhang, H., Pastor, M., & Zienkiewicz, O., "Strain Localisation Modelling and Pore Pressure in Saturated Sand Samples", Computational Mechanics, Vol. 22, No. 3, Pp. 266-280, (1998). 
11.	Ling, H. I., and Liu, H., "Pressure-level Dependency and Densification Behavior of Sand through Generalized Plasticity Model", Journal of engineering mechanics, Vol. 129, No. 8, Pp. 851-860, (2003). 
12.	Merodo, J., A., Tamagnini, R., Pastor, M., Mira, P., "Modelling Damage with Generalized Plasticity", Rivista Italiana di Geotecnica, Vol. 4, Pp.32-42, (2005).
13.	Mira, P., Tonni, M., Pastor, M.,  and Fernandez Merodo, A., "A Generalized Midpoint Aalgorithm for the Integration of a Generalized Plasticity Model for Sands", Int  J  Numer  Meth  Engng, Vol. 77, No. 9, Pp. 1201-1223, (2009). 
14.	Lashkari, A., & Latifi, M., "A Constitutive Model for Sand Liquefaction under Continuous Rotation of Principal Stress Axes", Mechanics Research Communications, Vol. 36, No. 2, 215-223, (2009). 
15.	Golchin, A., & Lashkari, A., "A Critical State Sand Model with Elastic–plastic Coupling", International Journal of Solids and Structures, Vol. 51, No. 15-16, 2807-2825, (2014). 
16.	Iraji, A., Farzaneh, O. and Seyedi Hosseininia, E., "A Modification to Dense Sand Dynamic Simulation Capability of Pastor-Zienkiewics-Chan Model", Acta Geotechnica, Vol. 9, No. 2, Pp. 343-353, (2014).  
17.	Goorani, M., and Hamidi, A., "A Generalized Plasticity Constitutive Model for Sand-gravel Mixtures, International Journal of Civil Engineering, Vol. 13, No. 2, Pp. 133-145, (2015). 
18.	Ravanbakhsh, E., and Hamidi, A., "Development of a Generalized Plasticity Constitutive Model for Cemented Sands Using Critical State Concept", International Journal of Geotechnical Engineering Vol. 7, No. 4, Pp. 364-373, (2013).    
19.	Najma, A. and Latifi, M., "Predicting Flow Liquefaction, a Constitutive Model Approach", Acta Geotechnica, Vol. 12, No. 4, Pp. 793-808, (2017). 
20.	Nova, R., and Wood, D. M., "A Constitutive Model for Sand in Triaxial Compression", International journal for numerical and analytical methods in geomechanics, Vol. 3, No. 3, Pp. 255-278, (1979). 
21.	Pradhan, T. B. S., Tatsuoka, F., Sato, Y., "Experimental Stress-dilatancy Relations of Sand Subjected to Cyclic Loading", Soils and Foundations, Vol. 29, No. 1, Pp. 45-64, (1989). 
22.	Masuda, T., Tatsuoka, F., Yamada, S., & Sato, T., "Stress-Strain Behavior of Sand in Plane Strain Compression, Extension and Cyclic Loading Tests", Soils and Foundations, Vol. 39, No. 5, Pp. 31-45, (1999). 
23.	Tatsuoka, F, and Ishihara, K., "Drained Deformation of Sand under Cyclic Stresses Reversing Direction", Soils and Foundations, Vol. 14, No. 3, Pp. 51-65, (1974b). 
24.	Niemunis, A., and Herle, I., "Hypoplastic Model for Cohesionless Soils with Elastic Strain Range", Mechanics of Cohesive‐frictional Materials, Vol. 2, No. 4, Pp. 279-299, (1997). 
25.	Karimi, J., Sato, T., & Koseki, J., "Plane Strain Compression Tests with Image Analysis on Dense Toyoura Sand", Bulletin of ERS, No. 38, Pp. 81-92, (2005). 
26.	Ling, H. I., Yang, S., Leshchinsky, D., Liu, H., and Burke, C., "Finite-element Simulations of Full-scale Modular-block Reinforced Soil Retaining Walls under Earthquake Loading", Journal of Engineering Mechanics, Vol. 136, No. 5, Pp. 653-661, (2010).