1. Aakif, A., and M. F. FaisalKhan. 2015. Automatic classification of plants based on their leaves. Biosystem Engineering 139: 66-75.
2. Asaei, H., A. Jafari, and M. Loghavi. 2016. Development and evaluation of a targeted orchard sprayer using machine vision technology. Journal of Agricultural Machinery 6 (2): 362-375. (In Farsi).
3. Gianessi, L. P., and N. P. Reigner. 2007. The value of herbicides in U.S. crop production. Weed Technology 21 (2): 559-566.
4. Golzarian, M. R., and R. A. Frick. 2011. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods 7 (1): 7-28.
5. Gonzalez, R. C., R. E. Woods, and S. L. Eddins. 2004. Digital Image Processing Using MATLAB. Prentice Hall.
6. Hlaing, S. H., and A. S. Khaing. 2014. Weed and crop segmentation and classification using area thresholding. International Journal of Research in Engineering and Technology 3: 375-382.
7. Kataoka, T., T. Kaneko, H. Okamoto, and S. Hata. 2003. Crop growth estimation system using machine vision. in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
8. Kazmi, W., F. J. Garcia-Ruiz, J. Nielsen, J. Rasmussen, and H. J. Andersen. 2015. Detecting creeping thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture 112: 10-19.
9. Meyer, G. E., and J. A. C. Neto. 2008. Verification of color vegetation indices for automated crop imaging applications. Computer and Electronic in Agriculture 63 (2): 282-293.
10. Meyer, G. E., T. Mehta, M. F. Kocher, D. A. Mortensen, and A. Samal. 1998. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Transactions of the ASAE 41 (4): 1189-1197.
11. Monaco, T. J., and A. S. Grayson, and D. C. Sanders. 1981. Influence of four weed species on the growth, yield, and quality of direct-seeded tomatoes (Lycopersicon esculentum). Weed Science 29 (4): 394-397.
12. Pantazi, X. E., D. Moshou, and C. Bravo. 2016. Active learning system for weed species recognition based on hyperspectral sensing. Biosystems engineering xxx, ARTICLE IN PRESS.
13. Pereira, L. A. M., R. Y. M. Nakamura, G. F. S. d. Souza, D. Martins, and J. P. Papa. 2012. Aquatic weed automatic classification using machine learning techniques. Computers and Electronics in Agriculture 87: 56-63.
14. Rohani, A., and H. Makarian. 2011. Preparation weed management maps using artificial neural networks aimed application at Precision Agriculture. Journal of Agricultural Machinery Engineering 1: 74-83. (In Farsi).
15. Tang, J. L., X. Q. Chen, R. H. Miao, and D. Wang. 2016. Weed detection using image processing under different illumination for site-specific areas spraying. Computers and Electronics in Agriculture 122: 103-111.
16. Woebbecke, D., G. E. Meyer, K. V. Bargen, and D. A. Mortensen. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE 38 (1): 259-269.
17. Woebbecke, D. M., G. E. Meyer, K. V. Bargen, and D. A. Mortensen. 1992. Plant species identification, size, and enumeration using machine vision techniques on near-binary images. Optics in Agriculture and Forestry 1836: 208-219.