[1] Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 2001;46:559–632.
[2] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth–Heinemann, Massachusetts, 2000.
[3] H. P. Degischer, B. Kriszt, Handbook of Cellular Metals, Production, Processing and Applications, Wiley–VCH/Verlag GmbH, Weinheim, Germany, 2002.
[4] Song Hong-Wei, Fan Zi-Jie, Gang Yu, Wang Qing-Chun, Tobota A. Partition energy absorption of axially crushed aluminum foam-filled hat sections. Int J Solids Struct 2005;42:2575–600.
[5] Motz, Pippan R. ‘Deformation behaviour of closed-cell aluminium foams in tension’. Acta Mater 2001;49:2463–70.
[6] Park C, Nutt SR. PM synthesis and properties of steel foams. Mater Sci Eng A 2000;288(1):111–8.
[7] Smith BH, Szyniszewski S, Hajjar JF, Schafer BW, Arwade SR. Steel foam for structures: a review of applications, manufacturing and material properties. J Constr Steel Res 2011;71:1–10.
[8] Park C, R Nutt S. Effects of process parameters on steel foam synthesis. Mater Sci Eng: A 2001;297(1–2):62–8.
[9] Muriel J, Sanchez Roa A, Barona Mercado W, Sanchez Sthepa H. Steel and gray iron foam by powder metallurgical synthesis. Supl Rev Latinoam Metal Mater 2009;S1(4):1435–40.
[10] Park C, Nutt SR. Anisotropy and strain localization in steel foam. Mater Sci Eng A 2001;A299(1–2):68–74.
[11] Park C, Nutt SR. Strain rate sensitivity and defects in steel foam. Mater Sci Eng A 2002;A323:358–66.
[12] Muriel J, Sanchez Roa A, Barona Mercado W, Sanchez Sthepa H. Steel and gray iron foam by powder metallurgical synthesis. Supl Rev Latinoam Metal Mater 2009;S1 (4):1435–40.
[13] Park C, Nutt SR. Anisotropy and strain localization in steel foam. Mater Sci Eng A 2001;A299:68–74.
[14] Park C, Nutt SR. Strain rate sensitivity and defects in steel foam. Mater Sci Eng A 2002;A323:358–66.
[15] Park C, Nutt SR. PM synthesis and properties of steel foams. Mater Sci Eng A 2000; A288:111–8.
[16] Friedl O, Motz C, Peterlik H, Puchegger S, Reger N, Pippan R. Experimental investigation of mechanical properties of metallic hollow sphere structures. Metall Mater Trans B 2007;39(1):135–46.
[17] Brown JA, Vendra LJ, Rabiei A. Bending properties of Al–steel and steel–steel composite metal foams. Metall Mater Trans A 1 July 2010 Online.
[18] Neville BP, Rabiei A. Composite metal foams processed through powder metallurgy. Mater Des 2008;29:388–96.
[19] Friedl O, Motz C, Peterlik H, Puchegger S, Reger N, Pippan R. Experimental investigation of mechanical properties of metallic hollow sphere structures. Metall Mater Trans B 2007;39(1):135–46.
[20] Rabiei A, Vendra LJ. A comparison of composite metal foam's properties and other comparable metal foams. Mater Lett 2009;63:533–6.
[21] Hyun S-K, Park J-S, Tane M, Nakajima H. Fabrication of lotus-type porous metals by continuous zone melting and continuous casting techniques. MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), 2005; 21–23 September 2005. Kyoto, Japan.
[22] Ikeda T, Aoki T, Nakajima H. Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property. Metall Mater Trans A 2007;36A:77–86.
[23] Verdooren A, Chan HM, Grenestedt JL, Harmer MP, Caram HS. Fabrication of low density ferrous metallic foams by reduction of ceramic foam precursors. J Mater Sci 2005;40:4333–9.
[24] Verdooren A, Chan HM, Grenestedt JL, Harmer MP, Caram HS. Fabrication of low density ferrous metallic foams by reduction of chemically bonded ceramic foams. J Am Ceram Soc 2005;89(10):3101–6.
[25] Tuchinsky L. Novel fabrication technology for metal foams. J Adv Mater 2005;37 (3):60–5.
[26] Kostornov AG, Kirichenko OV, Brodnikovskii NP, Guslienko YA, Klimenko VN. High-porous materials made from alloy steel fibers: production, structure, and mechanical properties. Powder Metall Metal Ceram 2008;47(5–6):295–8.
[27] R. Surace, L.A.C. De Filippis, A.D. Ludovico, G. Boghetich, Influence of processing parameters on aluminium foam produced by space holder technique, Mater Des, vol. 30, 2009, pp: 1878–1885.
[28] N.Q. Zhao, B. Jiang, X.W. Du, J.J. Li, C.S. Shi, W.X. Zhao, Effect of Y2O3 on the mechanical properties of open cell aluminum foams, Mater Lett, vol. 60, 2006, pp: 1665 – 1668.
[29] D.X. Sun, Y.Y. Zhao, Phase changes in sintering of Al/Mg/NaCl compacts for manufacturing Al foams by the sintering and dissolution process, Mater Lett, vol. 59, 2005, pp: 6– 10.
[30] N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater Sci Eng A, vol. 528, 2011, pp: 1662–1667.
[31] A. Hassani, A. Habibolahzadeh, H. Bafti, Production of graded aluminum foams via powder space holder technique, Mater Des, vol. 40, 2012, pp: 510–515.
[32] M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorption behavior of Al–Al 2 O 3 composite foam synthesized by space-holder technique, Mater Des, vol. 35, 2012, pp: 419–424.
[33] H. Bafti, A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater Des, vol. 31, 2010, pp: 4122–4129.
[34] T. Shimizu, K. Matsuzaki, H. Nagai, N. Kanetake, Production of high porosity metal foams using EPS beads as space holders, Mater Sci Eng A, vol. 558, 2012, pp: 343–348.
[35] N. Bekoz, E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J Mater Proc Technol, vol. 212, 2012, pp: 2109–2116.
[36] I. Ahmed, Z. Faming, O. Eileen, B. Eberhard, Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Mater. Des. 32 (2011) 146–153.
[37] D.P. Mondal, Hemant Jain, S. Das, A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Materials and Design 88 (2015) 430–437.
[38] M. Ilven, O. Enve, Influence of fluoride content of artificial saliva metal release from 17 to 4 PH stainless steel foam for dental implant applications, J Mater Sci Tech 29 (6) (2013) 582–588.
[39] L. Peroni, M. Scapin, C. Fichera, D. Lehmbus, J. Weise, J. Baumeister, M. Avall, Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates, Compos. Parts B 66 (2014) 430–442.
[40] G.M. Hossein, E.-K. Reza, T. Omid, T. Hamid, Fabrication and evaluation of oxidation resistance performance of open-celled Fe(Al) foam by space-holder technique, Adv Powder Tech 25 (2014) 960–967.
[41] J. Jakubowicz, G. Admek, M. Dewidar, Titanium foam made with saccharose as space holder, J. Porous. Mater. 20 (2013) 1134–1141.
[42] M. Ilven, O. Enver, Production and characterization of Cr–Si–Ni–Mo steel foams, In J Eng Mater Sci 18 (2011) 227–232.
[43] N. Bekoz and E. Oktay, Effects of carbamide shape and content on processing and properties of steel Foams, J. Mater. Proc. Tech., vol. 212, pp. 2109– 2116, 2012.
[44] A.K. Shaik dawood, S.S. Mohamed Nazirudeen, A Development of Technology for Making Porous Metal Foams Castings, Jordan J Mech Indus Eng, vol. 4. 2010, pp: 292 – 299.
[45] W.D. Wong-Angel, L. Tellez-Jurado, J.F. Chavez-Alcala, E. Chavira-Martinez, V.F. Verduzco-Cedeno, Effect of copper on the mechanical properties of alloys formed by powder metallurgy, Mater Des, vol. 58, 2014, pp: 12–18.
[46] A. Simchi, Effect of C and Cu addition on the densification and microstructure of iron powder in direct laser sintering process, Mater Lett, vol. 62, 2008, pp: 2840–2843.
[47] V. N. Antsiferov, A. A. Shatsov, S. A. Oglezneva, Structure and properties of powder metallurgy phosphorous steels, Powder Metallurgy and Metal Ceramics, 1999, Volume 38, Issue 3, pp 162–165.
[48] B. K. Datta, Powder Metallurgy: An Advanced Technique of Processing Engineering Materials, PHI Learning, 2013.