1. Rahn, C. D., and Wang, C. Y., "Battery Systems Engineering", John Wiley & Sons Ltd, (2013).
2. Mastali Majdabadi, M., "Electrochemical-Thermal Modeling of Lithium-ion Batteries", PhD thesis, University of Waterloo, (2016).
3. Linden, D., and Reddy, T. B., "Handbook of Batteries", 2nd ed, McGraw-Hill, New York, (2002).
4. Martin, H., "Solid-state-EV-Battery Breakthrough from Li-ion Battery Inventor John Goodenough", North American Energy News, (2017).
5. Campestrini, C., and Horsche, M. F., "Validation and Benchmark Methods for Battery Management System Functionalities: State of Charge Estimation Algorithms", Journal Energy Storage, Vol. 7, No. 1, pp. 38-51, (2016).
6. Hannan, M. A., and Lipu, M. S. H., "A Review of Lithium-ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations", Renewable and Sustainable Energy Reviews, Vol. 78, No. 1, pp. 834–854, (2017).
7. Chung, S. Y., Bloking, J. T., and Chiang, Y. M., "Electronically Conductive Phospho-olivines as Lithium Storage Electrodes", Nature Materials, Vol. 1, No. 2, pp. 123–128, (2002).
8. Conte, F. V., "Battery and Battery Management for Hybrid Electric Vehicles", A Review, Elektro Und Inf, Vol. 123, No. 10, pp. 424–31, (2006).
9. Imara Corporation website, Imaracorp.com, Archived from the original on 22 July 2009, Retrieved 8 October, (2011).
10. Kroeze, R. C., and Krein, P. T., "Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations", IEEE Power Electron Spec Conference, pp. 1336–1342, (2008).
11. Chen, M., and Rinc Mora, G. A., "Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance", IEEE Trans Energy Convers, Vol. 21, No. 2, pp. 504–11, (2006).
12. Xing, Y., Ma, E. W. M., Tsui, K. L., and Pecht, M., "Battery Management Systems in Electric and Hybrid Vehicles", Energies, Vol. 4, No. 11, pp. 1840–57, (2011).
13. Xu, L., Wang, J., and Chen, Q., "Kalman Filtering State of Charge Estimation for Battery Management System Based on A Stochastic Fuzzy Neural Network Battery model", Energy Convers Manag, Vol. 53, No. 1, pp. 33–9, (2012).
14. Li, J., Yuan, C. F., Guo, Z. H., Zhang, Z. A., Lai, Y. Q., and Liu, J., "Limiting Factors for Low Temperature Performance of Electrolytes in LiFePO4/Li and Graphite/Li Half Cells", Electrochim Acta, Vol. 59, No. 1, pp. 69–74, (2012).
15. Ye, Y., Shi, Y., Cai, N., Lee, J., and He, X., "Electro-thermal modeling and experimental validation for lithium ion battery", Journal of Power Sources, Vol. 199, No. 1, pp. 227– 238, (2012).
16. Xing, Y., He, W., Pecht, M., and Tsui, K. L., "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures", Applied Energy, Vol. 113, No. 1, pp. 106–115, (2014).
17. Zhang, Y., "State-of-charge Estimation of the Llithium-ion Battery System with Time-Varying Parameter for Hybrid Electric Vehicles", Control TheoryAppl IET, Vol. 8, No. 3, pp. 160–7, (2014).
18. Cheng, M., Feng, L., and Chen, B., "Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions", SAE International by University of Alberta Libraries, (2015).
19. Bahiraei, F., Fartaj, A., and Nazri, Gh. A., "Electrochemical-thermal Modeling to Evaluate Active Thermal Management of a Lithium-ion Battery Module", Electrochimica Acta, Vol. 254, No. 1, pp. 59–71, (2017).
20. Tang, Y., and Wu, L., "Study of the Thermal Properties During the Cyclic Process of Lithium ion Power Batteries Using the Electrochemical-Thermal Coupling model", Applied Thermal Engineering, Vol. 137, No. 1, pp. 11–22, (2018).
21. Hosseinzadeh, E., Genieser, R., Worwood, D., Barai, A., Marco, J., and Jennings, P., "A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application", Journal of power sources, Vol. 382, No. 1, pp. 77-94, (2018).
22. Chen, C., Xiong, R., Yang, R., and Shen, W., "State of Charge Estimation of Lithium-ion Battery Using an Improved Neural Network Model and Extended Kalman Filter", Journal of Cleaner Production, Vol. 234, No. 1, pp. 1153-1164, (2019).
23. Fink, C., and Kaltenegger, B., "Electrothermal and Electrochemical Modeling of Lithium-ion Batteries: 3D Simulation with Experimental Validation", The Electrochemical Society, Vol. 61, No. 27, (2014).
24. Doyle, M., Newman, J., Gozdz, A., Schmutz, C., and Tarascon, J. M., "Comparison of modeling predictions with experimental data from plastic lithium ion cells", Journal of the Electrochemical Society, Vol. 143, No. 6, (1996(.
25. EIG-ePLB-C020-Datasheet, HighEnergy Product ePLB C Technology.
26. Taheri, P., and Bahrami, M., "Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach",SAE Int, Vol. 5, No. 1, (2012).