1. Amer Eissa, A. 2004. A portable pendulum for impact characterization of whole eggshell. Misr Journal of Agricultural Engineering 21: 1-13.
2. De Ketelaere, B., M. S. Howarth, L. Crezee, J. Lammertyn, K. Viaene, I. Bulens, and J. De Baerdemaeker. 2006. Postharvest firmness changes as measured by acoustic and low-mass impact devices: a comparison of techniques. Postharvest Biology and Technology 41: 275-284.
3. Delwiche, M. J., T. McDonald, and S. V. Bowers. 1987. Determination of peach firmness by analysis of impact forces. Transactions of the ASAE 30: 249-0254.
4. Gan-Mor, S., and N. Galili. 2000. Rheological model of fruit collision with an elastic plate. Journal of Agricultural Engineering Research 75: 139-147.
5. Garcıa-Ramos, F., J. Ortiz-Canavate, M. Ruiz-Altisent, J. Dıez, L. Flores, I. Homer, and J. Chavez. 2003. Development and implementation of an on-line impact sensor for firmness sensing of fruits. Journal of Food Engineering 58: 53-57.
6. Garcia-Ramos, F. J., C. Valero, I. Homer, J. Ortiz-Cañavate, and M. Ruiz-Altisent. 2005. Non-destructive fruit firmness sensors: a review. Spanish Journal of Agricultural Research 3: 61-73.
7. Homer, I., F. J. Garcia-Ramos, J. Ortiz-Cañavate, and M. Ruiz-Altisent. 2010. Evaluation of nondestructive impact sensor to determine on-line fruit firmness. Chilean Journal of Agricultural Research 70: 67-74.
8. Idah, P., E. Ajisegiri, and M. Yisa. 2007. An assessment of impact damage to fresh tomato fruits. Au Jt 10: 271-275.
9. Kafashan, J., M. V. Zeebroeck, H. Sadrnia, D. Moshou, J. d. Baerdemaeker, B. Nicolai, H. Ramon, and B. Tijskens. 2008. Effects of impact locations on mechanical and dynamical properties of fruits. Agricultural and biosystems engineering for a sustainable world. International Conference on Agricultural Engineering, Hersonissos, Crete, Greece, 23-25 June, 2008: European Society of Agricultural Engineers (AgEng).
10. Khalifa, S., M. H. Komarizadeh, and B. Tousi. 2011. Usage of fruit response to both force and forced vibration applied to assess fruit firmness-a review. Australian Journal of Crop Science 5: 516.
11. Khoshnam, F., S. R. Hasan-Beigi, M. Namjoo, and M. Doroozi. 2017. The effect of acoustic system variables on sound signals of Melon varieties. Journal of Agricultural Machinery 7: 126-139.
12. Lien, C.-C., and C.-H. Ting. 2014. Assessing guava maturity by statistical analyses of dropped fruit impact responses. Postharvest Biology and Technology 95: 20-27.
13. Lien, C.-C., C. Ay, and C.-H. Ting. 2009. Non-destructive impact test for assessment of tomato maturity. Journal of Food Engineering 91: 402-407.
14. Mao, J., Y. Yu, X. Rao, and J. Wang. 2016. Firmness prediction and modeling by optimizing acoustic device for watermelons. Journal of Food Engineering 168: 1-6.
15. Namjoo, M., F. Khoshnam, H. Golbakhshi, and M. Dowlati. 2016. Kavun Meyve Olgunlaşmasında Fiziksel ve Mekanik Değişiklikler. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi: 135-144.
16. Nourain, J. 2012. Application of Acoustic Properties in Non–Destructive Quality Evaluation of Agricultural Products. International Journal of Engineering and Technology 2: 668-675.
17. Ragni, L., A. Berardinelli, and A. Guarnieri. 2010. Impact device for measuring the flesh firmness of kiwifruits. Journal of Food Engineering 96: 591-597.
18. Saadatinia, M., B. Emadi, and H. Sadrnia. 2014. Evaluation of Watermelon Ripeness by Analyzing Sounds Generated from Imposed Impact. Journal of Agricultural Machinery 4: 296-304.
19. Yurtlu, Y. B. 2012. Comparison of nondestructive impact and acoustic techniques for measuring firmness in peaches. Journal of Food, Agriculture & Environment 10: 180-185.