1. Banaeian, N., M. Omid, and H. Ahmadi. 2011. Energy Conversion and Management 52 (2): 1020-1025.
2. Blasco, X., M. Martinez, J. M. Herrero, C. Ramos, and J. Sanchis. 2007. Model-based predictive control of greenhouse climate for reducing energy and water consumption. Computers and Electronics in Agriculture 55 (1): 49-70.
3. Bozchalui, M. C., C. A. Cañizares, and K. Bhattacharya. 2015. Optimal Energy Management of Greenhouses in Smart Grids. IEEE Trans. Smart Grid 6 (2): 827-835.
4. Chen, J., J. Yang, J. Zhao, F. Xu, Z. Shen, and L. Zhang. 2016. Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing 174: 1087-1100.
5. Cuce, E., D. Harjunowibowo, and P. M. Cuce. 2016. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews 64: 34-59.
6. Fabrizio, E. 2012. Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy and Buildings 53: 57-63.
7. Hatirli, S. A., B. Ozkan, and C. Fert. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy 31 (4): 427-438.
8. Heidari, M. D., and M. Omid. 2011. Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy 36 (1): 220-225.
9. Hussain, A., I. S. Choi, Y. H. Im, and H. M. Kim. 2018. Optimal Operation of Greenhouses in Microgrids Perspective. IEEE Transactions on Smart Grid.
10. Ghasemi Mobtaker, H., Y. Ajabshirchi, S. F. Ranjbar, and M. Matloobi. 2017. Investigating the Effect of a North Wall on Energy Consumption of an East–West Oriented Single Span Greenhouse. Journal of Agricultural Machinery Engineering 7 (2): 350-363. (In Farsi).
11. Lasseter, R. H. 2002. Microgrids. In Power Engineering Society Winter Meeting, 2002. IEEE (Vol. 1, pp. 305-308). IEEE.
12. Mobtaker, H. G., Y. Ajabshirchi, S. F. Ranjbar, and M. Matloobi. 2016. Solar energy conservation in greenhouse: Thermal analysis and experimental validation. Renewable Energy 96: 509-519.
13. Mohammadi, A., and M. Omid. 2010. Economic analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy 87 (1): 191-196.
14. Momeni, D., and M. H. Rahmati. 2012. Evaluation of the effects of temperature and humidity control on greenhouse cucumber production in Jiroft and Kahnoj area. Journal of Agricultural Machinery 2 (1): 38-45. (In Farsi).
15. Mortezapour, H., M. Jafari, K. Jafari Naeimi, and M. M. Maharlooei. 2017. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector. Journal of Agricultural Machinery 7 (2): 364-378. (In Farsi).
16. Nederhoff, E., and B. Houter. 2007. Improving energy efficiency in greenhouse vegetable production. Wellington, NZ.
17. Ozkan, B., R. F. Ceylan, and H. Kizilay. 2011. Energy inputs and crop yield relationships in greenhouse winter crop tomato production. Renewable Energy 36 (11): 3217-3221.
18. Pahlavan, R., M. Omid, and A. Akram. 2012. Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37 (1): 171-176.
19. Petreus, D., R. Etz, T. Patarau, and C. Orian. 2015. Microgrid concept based on distributed renewable generators for a greenhouse. Acta Technica Napocensis 56 (2): 31.
20. Samavatean, N., Sh. Rafiee, H. Mobli, and A. Mohammadi. 2011. An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy 36 (6): 1808-1813.
21. Vadiee, A., and V. Martin. 2014. Energy management strategies for commercial greenhouses. Applied Energy 114: 880-888.