تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,493 |
تعداد مشاهده مقاله | 9,277,775 |
تعداد دریافت فایل اصل مقاله | 6,509,707 |
بررسی اثر منابع مختلف نوری بر ریختشناسی و رشد گیاهچههای سیبزمینی در شرایط درون شیشه و تأثیر آن بر تولید ریزغده در گلخانه | ||
علوم باغبانی | ||
مقاله 4، دوره 31، شماره 4، اسفند 1396، صفحه 683-693 اصل مقاله (698.63 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jhorts4.v31i4.57458 | ||
نویسندگان | ||
جعفر نباتی* 1؛ الهه برومند رضا زاده1؛ محمد زارع مهرجردی2؛ محمد کافی1 | ||
1دانشگاه فردوسی مشهد | ||
2مجتمع آموزش عالی شیروان | ||
چکیده | ||
هدف این مطالعه استفاده از منابع نوری مختلف در راستای کاهش مصرف انرژی برای تولید گیاهچههای سیبزمینی در شرایط درون شیشه و اثر آن بر تولید ریزغده در گلخانه بود. مطالعه با استفاده از آزمایش فاکتوریل بر پایه طرح کاملاً تصادفی با شش تکرار در شرایط درون شیشه و چهار تکرار در گلخانه انجام شد. عوامل مورد بررسی شامل ارقام سیبزمینی (آگریا و ساوالان) و طیفهای مختلف نور (قرمز، آبی، ترکیبی آبی- قرمز و نور سفید) با استفاده از دیودهای ساطع کننده نور و نور فلورسنت بود. نتایج نشان داد که طیف قرمز موجب افزایش ارتفاع گیاهچه در شرایط درون شیشه شد. طیف سفید و قرمز به ترتیب بیشترین و کمترین سطح برگ را در شرایط درون شیشه تولید کردند. کمترین تعداد گره در گیاهچه در طیف قرمز و بیشترین تعداد گره در طیف سفید مشاهده شد. بیشترین و کمترین فاصله میانگره به ترتیب مربوط به طیف قرمز و آبی بود. رقم آگریا نسبت به فونتانه از ارتفاع بوته بیشتری برخوردار بود از طرف دیگر رقم ساوالان سطح برگ بیشتری نسبت به آگریا تولید کرد. نتایج حاصل از بررسی گلخانهای نشان داد که شرایط رشدی گیاهچهها از نظر طیفهای مختلف نوری قبل از انتقال به گلخانه، تأثیری بر تعداد ریزغده تولیدی نداشت اما وزن ریزغده در گیاهچههای رشد یافته در طیف قرمز کمتر از سایر تیمارها بود. بهطور کلی استفاده از دیودهای ساطع کننده نور میتواند بهعنوان منبع نوری مناسب، با صرفهجویی در مصرف انرژی، گیاهچههایی قابل رقابت با نور فلورسنت در شرایط درون شیشه تولید کند. | ||
کلیدواژهها | ||
آگریا؛ دیود؛ ساوالان؛ طیف نور؛ فلورسنت | ||
مراجع | ||
1- Aksenova N.P., Konstantinova T.N., Sergeeva L.I., Machachkova I., and Golyanovskaya S.A. 1994. Morphogenesis of potato plants in-vitro. 1. Effect of light quality and hormones. Journal of Plant Growth Regulation 13:143-146.
2- Avercheva O.V., Berkovich Y.A., Erokhin A.N., Zhigalova T.V., Pogosyan S.I., and Smolyanina S.O. 2009. Growth and photosynthesis of Chinese cabage plants grown under Light- Emiting Diode-based light source. Russian Journal of Plant Physiology 56:14-21.
3- Chindi A., Giorgis G.W., Solomon A., Tessama L., and Negash K. 2014. Rapid multiplication techniques (RMTs): A tool for the production of quality seed potato (Solanum tuberosum L.) in Ethiopia. Asian Journal of Crop Science 6:176-185.
4- Donnelly D.J., Coleman W.K., and Coleman S.E. 2003. Potato micro-tuber production and performance: A review. American Journal of Potato Research 80:103-115.
5- Economou A.S., and Read P.E. 1987. Light treatments to improve efficiency of in vitro propagation system. HortScience 22:751–754.
6- Fillipo R.V.H., Cano G.H.B., and Chaves O.J.A. 2010. LED lighting applications. Science and Technology 45:13-18.
7- Folta K.M. 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiology 135:1407–1416.
8- Gopal J., Chamail A., and Sarkar D. 2005. Use of microtubers for slow growth in vitro conservation of potato germplasm. Plant Genetic Resources - News 1141:56-60.
9- Haghighi M., and Pessarakli M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161:111-117.
10- Hayashi M., Fujita N., Kitaya Y., and Kozai T. 1992. Effect of sideward lighting on the growth of potato plantlets in vitro. Acta Horticulturae 319:163-166.
11- Hoagland D.R., and Arnon D.I. 1950. The water-culture method for growing plants without soil. Search Results California Agricultural Experiment Station Circular. 347:1-32.
12- Hogewoning S.W., Trouwborst G., Maljaars H., Poorter H., Ieperen W.V., and Harbinson J. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61:3107–3117.
13- Jackson J.A., and Jenkins G.I. 1995. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsisi hy4 mutant. Plantarum 197:233-239.
14- Kim H.H., Goins G.D., Wheeler R.M., and Sager J.C. 2004. Green light suplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617-1622.
15- Kubasek W.L., Shirley B.W., McKillop A., Goodman H.M., Briggs W., and Ausubel F.M. 1992. Regulation of flavonoid biosynthetic genes in germinating Arabidopsisi seedlings. Plant Cell 4:1229-1236.
16- Miyashita Y., Kimura T., Kitaya Y., and Kozai T. 1994. Effects of red on the growth and morphology of potato plantlets in vitro: An experimental use of light emitting diodes (LEDs) as a light source for tissue culture. Artificial Lighting in Hort. Third International Symposium. Noordwijkerhout, the Netherlands 23–27 Jan.
17- Murashige T., and Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum 15:473–497.
18- Paniagua Pardo G., Hernandez Aguilar C., Rico Martinez F., Dominguez Pacheco A., Martinez Gonzalez C., and Martinez Canseco M. 2014. Effects of light emitting diode high intensity on growth of lettuce (Lactuca sativa L.) and broccoli (Brassica oleracea L.) seedlings. Annual Review & Research in Biology 4:2983-2994.
19- Perez B.S., Moreno A.D., and Garcia V.C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture 8: 904–910.
20- Samuoliene G., Brazaityte A., Urbonaviciute A., Sabajeviene G., and Duchovskis P. 2010. The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste 97: 99-104.
21- Schuerger C.A., Brown S.C., and Stryjewski C.E. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Annals of Botany 79:273-282.
22- Taiz L., and Zeiger E. 2010. Plant Physiology, 5nd Edition Sinauer Associates, Sunderland, MA.
23- Tamulaitis G., Duchovskis P., Bliznikas Z., Breive K., Ulinskaite R., Brazaityte A., Novickovas A., and Zukauskas A. 2005. High-power light-emitting diode based facility for plant cultivation. Journal of Physics D: Applied Physics 38:3182–3187.
24- Tennessen D.J., Singsaas E.L., and Sharkey T.D. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Research 39: 85-92.
25- Xu H.I., Xu Q., Li F., Feng Y., Qin F., and Fang W. 2012. Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Horticultural Science148:190–196.
26-Yorio N.C., Goins G.D., Kagie H.R., Wheeler M.R., and Sager J.C. 2001. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supplementation. Hortscience 36: 380–383.
27- Zhang L., and Wong M.H. 2007. Environmental mercury contamination in China: Sources and impacts. Environment International 33:108-121.
28- Zobayed M., Armstrong J., and Armstrong W. 2001. Micro propagation of potato: Evaluation of closed, diffusive and forced ventilation on growth and tuberization. Annals of Botany 87: 53-59. | ||
آمار تعداد مشاهده مقاله: 751 تعداد دریافت فایل اصل مقاله: 695 |