- Tomlin, C.D.S., The pesticide manual: a world compendium. 2009: British Crop Production Council.
- Bishop, C.A., T.V. McDaniel, and S.R. de Solla, g Atrazine in the Environment. Ecotoxicology of amphibians and reptiles, 2009: p. 225.
- Pathak, R.K. and A.K. Dikshit. Various techniques for Atrazine removal. in Int Conf Life Sci Technol. 2011.
- Gillham, R.W. and S.F. O'Hannesin, Enhanced degradation of halogenated aliphatics by zero‐valent iron. Ground water, 1994. 32(6): p. 958-967.
- Zhang, W.-x., Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research, 2003. 5(3-4): p. 323-332.
- Zhu, C., et al., Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study. Journal of hazardous materials, 2016. 316: p. 232-241.
- Zhao, X., et al., An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water research, 2016. 100: p. 245-266.
- Tuček, J.i., et al., Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As (0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry & Engineering, 2017. 5(4): p. 3027-3038.
- Ehrsam, M., S.A. Knutie, and J.R. Rohr, The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues. Environmental toxicology and chemistry, 2016. 35(9): p. 2239-2244.
- Alvey, S. and D. Crowley, Influence of organic amendments on biodegradation of atrazine as a nitrogen source. Journal of environmental quality, 1995. 24(6): p. 1156-1162.
- Chen, J.-L., et al., Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials, 2001. 83(3): p. 243-254.
- Dombek, T., et al., Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environmental Pollution, 2001. 111(1): p. 21-27.
- Satapanajaru, T., et al., Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water, Air, and Soil Pollution, 2008. 192(1-4): p. 349-359.
- Zhang, W., Nanoscale iron particles for environmental remediation: An overview. Journal of nanoparticle Research, 2003. 5(3): p. 323-332.
- Johnson, T.L., M.M. Scherer, and P.G. Tratnyek, Kinetics of halogenated organic compound degradation by iron metal. Environmental science & technology, 1996. 30(8): p. 2634-2640.
- Liu, L., et al. Effect of pH on Reduction of Nitrobenzene in Groundwater by Zero-Valent Iron. 2009. IEEE.
- Choe, S., H.M. Liljestrand, and J. Khim, Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry, 2004. 19(3): p. 335-342.
- Agrawal, A. and P.G. Tratnyek, Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental science & technology, 1995. 30(1): p. 153-160.
|