1. Calus, M., A. De Roos, and R. Veerkamp. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics, 178(1), 553-561.
2. Chatterjee, N., B. Wheeler, J. Sampson, P. Hartge, S. J. Chanock, and J.H. Park. 2013. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nature genetics, 45(4), 400.
3. Clark, S. A., J. M. Hickey, and J. H. Van der Werf. 2011. Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution, 43(1), 18.
4. Colombani, C., P. Croiseau, S. Fritz, F. Guillaume, A. Legarra V. Ducrocq, and C. Robert-Granie. 2012. A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle. Journal of dairy science, 95(4), 2120-2131.
5. Crossa, J., P. Perez, J. Hickey, J. Burgueño, L. Ornella J. Ceron-Rojas, X. Zhang, S. Dreisigacker, R.Babu, Y. Li, and D. Bonnett. 2014. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 112(1), 48.
6. Daetwyler, H. D., B. Villanueva, P. Bijma, and J. A. Woolliams. 2007. Inbreeding in genome‐wide selection. Journal of Animal Breeding and Genetics, 124(6), 369-376.
7. Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185: 1021-1031.
8. De los Campos, G., and P. Perez-Rodriguez. "BGLR: Bayesian generalized linear regression." R package version 1.0.5 .2016.
9. De Los Campos, G., D. Gianola, G. J. Rosa, K. A. Weigel, and J. Crossa. 2010. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genetics Research, 92(4), 295-308.
10. Ehret, A., D. Hochstuhl, D. Gianola, and G. Thaller. 2015. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Genetics Selection Evolution, 47(1), 22.
11. Eichler, E. E., J. Flint, G. Gibson, A. Kong, S. M. Leal, J.H. Moore, and J.H.Nadeau. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 11(6), 446.
12. Ghafouri-Kesbi, F., G. Rahimi-Mianji, M. Honarvar, and A. Nejati-Javaremi. 2017. Predictive ability of Random Forests, Boosting, Support Vector Machines and Genomic Best Linear Unbiased Prediction in different scenarios of genomic evaluation. Animal Production Science, 57(2), 229-236.
13. Gianola, D., and J. B. van Kaam. 2008. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics, 178(4), 2289-2303.
14. Gianola, D., H. Okut, K. A. Weigel, and G. J. Rosa. 2011. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC genetics, 12(1), 87.
15. Gianola, D., R. L. Fernando, and A. Stella. 2006. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics, 173: 1761-1776.
16. Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica, 136(2), 245-257.
17. Goddard, M. E., B. J. Hayes, and T. H. Meuwissen. 2010. Genomic selection in livestock populations. Genetics research, 92(5-6), 413-421.
18. Gonzalez-Camacho, J., G. de Los Campos, P. Perez, D. Gianola, J.E. Cairns, G. Mahuku, R. Babu, and J. Crossa, 2012. Genome-enabled prediction of genetic values using radial basis function neural networks. Theoretical and Applied Genetics, 125(4), 759-771.
19. Hayes, B. J., P. J. Bowman, A. C. Chamberlain, K. Verbyla, and M. E. Goddard. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1), 51.
20. Heslot, N., H. P. Yang, M. E. Sorrells, and J. L. Jannink. 2012. Genomic selection in plant breeding: a comparison of models. Crop Science, 52(1), 146-160.
21. Howard, R., A. L. Carriquiry, and W. D. Beavis. 2014. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3: Genes, Genomes, Genetics, g3-114.
22. Lampinen, J., and A. Vehtari. 2001. Bayesian approach for neural networks—review and case studies. Neural networks, 14(3), 257-274.
23. Legarra, A., C. Robert-Granie, P. Croiseau, F. Guillaume, and S. Fritz. 2011. Improved Lasso for genomic selection. Genetics research, 93(1), 77-87.
24. Lin, Z., N. O. Cogan, L. W. Pembleton, G. C. Spangenberg, J. W. Forster, B.J. Hayes, and H.D. Daetwyler. 2016. Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. The plant genome, 9(1).
25. MacKay, D. J., and D. J. Mac Kay. 2003. Information theory, inference and learning algorithms. Cambridge university press.
26. Martini, J. W., N. Gao, D. F. Cardoso, V. Wimmer, M. Erbe, R.J. Cantet, and H. Simianer. 2017. Genomic prediction with epistasis models: on the marker-coding-dependent performance of the extended GBLUP and properties of the categorical epistasis model (CE). BMC bioinformatics, 18(1), 3.
27. Meuwissen, T. H., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
28. Meuwissen, T., and M. Goddard, 2010. The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole-genome sequence density genotypic data. Genetics, 185: 1441-1449.
29. Mohammadi, Y., M. M. Shariati, S. Zerehdaran, M. Razmkabir, M. B. Sayyadnejad, and M. B. Zandi. 2016. The accuracy of genomic breeding value for production trait in Iranian Holstein Dairy Cattle using parametric and non-parametric methods. Animal Production, 18(1): 1-11 (In Persian).
30. Moser, G., S. H. Lee, B. J. Hayes, M. E. Goddard, N. R. Wray, and P.M.Visscher. 2015. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS genetics, 11(4), e1004969.
31. Neves, H. H., R. Carvalheiro, A. M. P. O’brien, Y. T. Utsunomiya, A. S. Do Carmo, F.S. Schenkel, J. Sölkner, J.C. McEwan, C.P. Van Tassell, J.B. Cole, and M.V. Da Silva. 2014. Accuracy of genomic predictions in Bos indicus (Nellore) cattle. Genetics Selection Evolution, 46(1), 17.
32. Ogutu, J. O., H.-P. Piepho, and T. Schulz-Streeck. 2011. A comparison of random forests, boosting and support vector machines for genomic selection. In BMC proceedings (Vol. 5, No. 3, p. S11). BioMed Central.
33. Okut, H., X.-L. Wu, G. J. Rosa, S. Bauck, B. W. Woodward, R.D.Schnabel, J.F. Taylor, and D.Gianola. 2013. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Genetics Selection Evolution, 45(1), 34.
34. Okut, H., D. Gianola, G. J. Rosa, and K. A. Weigel. 2011. Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Genetics Research, 93(3), 189-201.
35. Perez, P., and G. de Los Campos. 2014. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics, 198(2), 483–495.
36. Perez-Rodriguez, P., D. Gianola, J. M. Gonzalez-Camacho, J. Crossa, Y. Manès, and S. Dreisigacker. 2012. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes, Genomes, Genetics, 2(12), 1595-1605.
37. Shaneh, A., and G. Butler. 2006. Bayesian learning for feed-forward neural network with application to proteomic data: the glycosylation sites detection of the epidermal growth factor-like proteins associated with cancer as a case study. In Conference of the Canadian Society for Computational Studies of Intelligence (pp. 110-121). Springer, Berlin, Heidelberg.
38. Tusell, L., P. Perez-Rodriguez, S. Forni, X. L. Wu, and D. Gianola. 2013. Genome-enabled methods for predicting litter size in pigs: a comparison. Animal, 7(11), 1739-1749.
39. Wolc, A., J. Arango, P. Settar, J. E. Fulton, N. P. O'Sullivan, R. Preisinger, D. Habier, R. Fernando, D.J. Garrick, and J.C. Dekkers. 2011. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens. Genetics Selection Evolution, 43(1), 23.
40. Xu, M., G. Zeng, X. Xu, G. Huang, R. Jiang, and W. Sun. 2006. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina. Water, Air, and Soil Pollution, 172(1-4), 167-184.
41. Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D.R. Nyholt, P.A. Madden, A.C. Heath, N.G. Martin, G.W. Montgomery, and M.E. Goddard. 2010. Common SNPs explain a large proportion of the heritability for human height. Nature genetics, 42(7), 565.