تعداد نشریات | 49 |
تعداد شمارهها | 1,846 |
تعداد مقالات | 19,518 |
تعداد مشاهده مقاله | 9,306,507 |
تعداد دریافت فایل اصل مقاله | 6,540,094 |
خصوصیات فیزیکی و شیمیایی، فرآسنجههای تخمیری تولید گاز، گوارش پذیری نشاسته و ساختار گرانولهای نشاسته در ذرت ایرانی سینگل کراس 702 و واریتههای مختلف ذرتهای تجاری-وارداتی | ||
پژوهشهای علوم دامی ایران | ||
مقاله 4، دوره 13، شماره 1 - شماره پیاپی 45، فروردین 1400، صفحه 43-64 اصل مقاله (3 M) | ||
نوع مقاله: علمی پژوهشی - تغذیه نشخوارکنندگان | ||
شناسه دیجیتال (DOI): 10.22067/ijasr.v13i1.85030 | ||
نویسندگان | ||
عطیه رحیمی* 1؛ عباسعلی ناصریان2؛ رضا ولی زاده2؛ عبدالمنصور طهماسبی2؛ حسام دهقانی3 | ||
1گروه علوم دامی،دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
2گروه علوم دامی،دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
3دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
در این مطالعه ذرت ایرانی واریته سینگل کراس 702 با ذرتهای تجاری-وارداتی شامل روس، اکراین و برزیل از نظر خصوصیات فیزیکی و شیمیایی، فرآسنجههای تخمیری تولید گاز، خصوصیات تجزیهپذیری شکمبهای، رودهای و کل دستگاه گوارش، میزان آسیب دیدگی و ژلاتیناسیون نشاسته و ساختار گرانولهای نشاسته مقایسه شدند. ذرت سینگل کراس 702 از نظر شکل ظاهری نسبت به سایر ذرتها کوچکتر بود. وزن حجمی ذرت برزیل نسبت به سایر ذرتها به طور معنیداری بالاتر بود. پروتئین، ADF، NDF، نشاسته، NFC، TDN، NEl و NEg به طور معنیداری در واریتههای مختلف ذرت متفاوت بودند. نشاسته ذرت سینگل کراس 702 (03/69 درصد) به طور معنیداری پایینتر از ذرتهای اکراین (36/70 درصد)، روس (04/71 درصد) و برزیل (49/71 درصد) بود. گاز تجمعی تولید شده در مدت 24 و 48 ساعت در ذرت برزیل، روس و سینگل کراس 702 بالاتر از ذرت اکراین بود. غلظت نیتروژن آمونیاکی و کل اسیدهای چرب فرار در زمان 24 ساعت انکوباسیون تحت تأثیر واریتههای مختلف ذرت قرار نگرفت. ذرتهای سینگل کراس 702 و روس قابلیت هضم نشاسته شکمبهای بالاتر و قابلیت هضم نشاسته رودهای کمتری نسبت به ذرتهای اکراین و برزیل داشتند. قابلیت هضم شکمبهای، رودهای و کل دستگاه گوارش برای پروتئین خام بین واریتههای مختلف دانه ذرت اختلاف معنیداری نشان نداد. درصد ژلاتیناسیون نشاسته در ذرت روس (24/4 درصد) و سینگل کراس 702 (17/4 درصد) بالاتر از ذرت برزیل (32/3 درصد) و اکراین (78/3 درصد) بود. ذرت سینگل کراس 702 نسبت به سایر ذرتها میانگین مساحت دور هر گرانول، قطر طولی و عرضی و اندازه گرانولهای نشاسته کمتر و ماتریکس پروتئینی ضعیفتری داشت. نتایج این مطالعه نشان داد که ذرت سینگل کراس 702 از لحاظ میزان و نرخ تولید گاز، درصد ژلاتیناسیون و گوارش پذیری نشاسته مشابه با ذرت روس بود. | ||
کلیدواژهها | ||
تولید گاز؛ ذرت سینگل کراس 702؛ ذرتهای وارداتی؛ ژلاتیناسیون و گوارش پذیری نشاسته | ||
مراجع | ||
1- Abdelrahman, A. A., and R. C. Hoseney. 1984. Basics for hardness in pearl millet, grain sorghum and corn. Cereal Chemistry, 61:232–235. 2- Allen, M. S., R. A. Longuski., and Y. Ying. 2008. Endosperm type of dry ground corn affects ruminal and total tract digestion of starch in lactating dairy cows. Journal of Dairy Science, 91 (E-Suppl. 1): 529. (Abstract) 3- AOAC, 2012. Official Methods of Analysis, 19th ed. Association of Official Analytical Chemists, Washington, DC, 121-130. 4- Bechtel, D. B., I. Zeyas., L. Kaleikau., and Y. Pomeranz. 1990. Size-distribution of wheat starch granules during endosperm development. Cereal Chemistry, 67: 59–63. 5- Bechtel, D. B., I. Zeyas., R. Dempster., and J. D. Wilson. 1993. Size-distribution of starch granules isolated from hard red winter and soft winter wheat. Cereal Chemistry, 70: 238–240. 6- Chai, W. Z., A. H. van Gelder., and J. W. Cone. 2004. Relationship between gas production and starch degradation in feed samples. Aminal Feed Science and Technology, 114: 195-204. 7- Chen, K. H., J. T. Huber., J. Simas., C. B. Theurer., P. Yu., S. C. Chan., F. Santos., Z. Wu., and R. S. Swingle. 1994. Effect of enzyme treatment or steam flaking of sorghum grain on lactation and digestion in dairy cows. Journal of Dairy Science, 78: 1721-1727. 8- Cone, J. W. 1998a. The development, use and application of the gas production technique at the DLO Institute for Animal Science and Health (AD-DLO), Lelystad, The Netherlands. In: Deaville, E. R., Owen, E., Adesogan, A. T., Rymer, C., Huntington, J. A., Lawrence, T. L. J. (Eds.), In vitro Techniques for Measuring Nutrient Supply to Ruminants. Occasional publication No. 22 British Society of Animal Science, pp. 65-78. 9- Correa, C. E. S., R. D. Shaver., M. N. Pereira., J. G. Lauer., and K. Kohn. 2002. Relationship between corn vitreousness and ruminal in situ starch degradability. Journal of Dairy Science, 85: 3008-3012. 10- Cromwell, G. L., M. J. Bitzer., T. S. Stahly., and T. H. Johnson. 1983. Effects of soil nitrogen fertility on the protein and lysine content and nutritional value of normal and opaque-2 corn. Journal of Animal Science, 57:1345-1351. 11- Cui, L., S. Dong., J. Zhang., and P. Liu. 2014. Starch granule size distributionandmorphogenesisin maize (Zea mays L.) grains with different endosperm types. Australian journal of crop science, 8 (11): 1560-1565. 12- D’Alfonso, T. H. 2005. Sources of variance of energy digestibilityin corn-soy poultry diets and the effect on performance: Starch, protein, oil and fiber. Agris Science, 47:83–86. 13- D’Alfonso, T. H., and K. McCracken. 2002. Global corn quality variability. Proceedings of the Multistate Poultry Meeting, Indianapolis, Indiana, May14-16. 14- Dunshea, F. R., S. A. Pate., V. M. Russo., and B. J. Leary. 2012b. A starch binding agent decreases the rate of fermentation of wheat in a dose-dependent manner. Accessed March 21. The university of Melbourne. 15- Dunshea, F. R., V. M. Russo., I. Sawyer., and B. J. Leary. 2012a. A starch-binding agent decreases the in vitro rate of fermentation of wheat. Journal of Dairy Science, 95 (Suppl 2): 199. (Abstract). 16- Fanning, K. C., R. A. Longuski., R. J. Grant., M. S. Allen., and J. F. Beck. 2002. Endosperm type and kernel processing of corn silage: Effect on starch and fiber digestion and ruminal turnover in lactating cows. Journal of Dairy Science, 85 (Suppl. 1): 204. (Abstract). 17- Firkins, J. L., M. L. Eastridge., N. R. St-Pierre., and S. M. Noftsger. 2001. Effects of grain variability and processing on starch utilization by lactating dairy cattle. Journal of Animal Science, 79 (E Suppl.): E218-E238. 18- France, J., J. Dijkstra., M. S. Dhanoa., S. Lopez., and A. Bannink. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition, 83: 143–150. 19- Genter, C. F., J. F. Eheart., and W. N. Linkous. 1956. Effects of location, hybrid, fertilizer, and rate of planting on the oil and protein contents of corn grain. Agronomy Journal, 48: 63-67. 20- Giuberti, G., A. Gallo., F. Masoero., L. F. Ferraretto., P. C. Hoffman., and R. D. Shaver. 2014. Factors affecting starch utilization in large animal food production system: A review. Starch, 66: 72–90. 21- Gozho, G. N., and T. Mutsvangwa. 2008. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows. Journal of Dairy Science, 91: 2726– 2735. 22- Groot, J. C. J., J. W. Cone., B. A. Williams., F. M. Debersaques., and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 64: 77–89. 23- Hoffman, P. C., and R. D. Shaver. 2009. Corn Biochemistry: Factors relating to starch digestibility in lactating cows. Dairy Health and Nutrition Conference. New York, USA. 24- Hoffman, P. C., D. Ngonyamo-Majee., and R. D. Shaver. 2010. Technical note: Determination of corn hardness in diverse corn germplasm using near-infrared reflectance baseline shift as a measure of grinding resistance. Journal of Dairy Science, 93: 1685-1689. 25- Hurkman, W. J., K. F. McCue., S. B. Altenbach., A. Korn., C. K. Tanaka., K. M. Kothari., E. L. Johnson., D. B. Bechtel., J. D. Wilson., O. D. Anderson., and F. M. Dupont. 2003. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164: 873–881 26- Hutjens, M., and H. Dann. 2000. Grain processing: is too coarse or too fine? Department of Animal Sciences, University of Illinois. 27- Iji, P. A., K. Khumalo., S. Slippers., and R. M. Gous. 2003. Intestinal function and body growth of broiler chickens on diets based on maize dried at different temperatures and supplemented with a microbial enzyme. Reproduction Nutrition Development, 43:77-90. 28- Jaeger, S. L., C. N. Macken., G. E. Erickson., T. J. Klopfenstein., W. A. Fithian., and D. S. Jackson. 2004. The influence of corn kernel traits on feedlot cattle performance. Nebraska Beef Report, 54-57. 29- Ji, Y., K. Seetharaman., K. Wong., J. Hasjim., L. M. Pollak., S. Duvick., J. Jane., and P. J. White. 2003a. Thermal and structure properties of unusual starches from developmental corn lines. Carbohydrate Polymer, 51: 439–450. 30- Ji, Y., K. Wong., J. Hasjim., L. M. Pollak., S. Duvick., J. Jane., and P. J. White. 2003b. Structure and function of starch from advanced generation of new corn lines. Carbohydrate Polymer, 54: 305–319. 31- Kaczmarek, S., A. Cowieson., D. Jozefiak., and M. Bochenek. 2007. The effect of drying temperature and exogenous enzymes supplementation on the nutritional value of maize for broiler chickens. In: Proceedings of the 16th European Symposium on poultry nutrition, August 26-30, 2007, Strasbourg, France, 555-558. 32- Kaur, A., N. Singh., R. Ezekiel., and H. S. Guraya. 2007. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 101: 643–651. 33- Kniep, K. R., and S. C. Mason. 1991. Lysine and protein content of normal and opaque-2 maize grain as influenced by irrigation and nitrogen. Crop Science, 31: 177-181. 34- Knutson, C. A. 1990. Annealing of maize starches at evevated temperatures. Cereal Chemistry, 67: 376-384. 35- Kotara, D., and B. Fuchs. 2001. The effect of gelatinization degree and source of starch on the ileal and faecal digestibility of nutrients and growth performance of early-weaned piglets. Animal Feed Science and Technology, 10:163-70. 36- Leeson, S., A. Yersin., and L. Volker. 1993. Nutritive value of the 1992 corn crop. Journal of Applied Poultry Research, 2: 208-213. 37- Leeson, S., and J. D. Summers. 1976. Effect of adverse growing conditions on corn maturity and feeding value for poultry. Poultry Science, 55: 588-593. 38- Leeson, S., J. D. Summers, and T. B. Daynard. 1977. The effect of kernel maturity at harvest as measured by moisture content, on the metabolizable energy value of corn. Poult. Sci. 56:154-156. 39- Leeson, S., J. D. Summers., and T. R. Daynard. 2003. The effect of kernel maturity at harvest as measured by moisture content, on the metabolizable energy value of corn. Poultry Science, 56: 154–156. 40- Li, Q. F., M. Shi., and C. X. Shi. 2014. Effect of variety and drying method on the nutritive value of corn for growing pigs. Journal of Animal Science Biotechnology, 5:18-28. 41- Li, Y. L. 1999. Effect of normal corn pollen burst of maize grain and burst characteristics. Chinese Agricultural Science Bulletin, 15 (6): 24–26. 42- Liu, P., C. H. Hu., S. T. Dong., K. J. Wang., J. W. Zhang., and B. R. Zhang. 2005. Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corns. Scientia Agricola, 38 (1): 52–58. 43- Longuski, R. A., K. C. Fanning., M. S. Allen., R. J. Grant., M. S. Allen., and J. F. Beck. 2002. Endosperm type and kernel processing of corn silage: Effect on short-term lactational performance in dairy cows. Journal of Dairy Science, 85 (Suppl. 1): 204. 44- Lopes, J. C., R. D. Shaver, P. C. Hoffman, M. S. Akins, S. J. Bertics, H. Gencoglu, and J. G. Coors. 2009. Type of corn endosperm influences nutrient digestibility in lactating dairy cows. Journal of Dairy Science, 92: 4541-4548. 45- Lopes, J. C., R. D. Shaver., P. C. Hoffman., M. S. Akins., S. J. Bertics., H. Gencoglu., and J. G. Coors. 2009. Type of corn endosperm influences nutrient digestibility in lactating dairy cows. Journal of Dairy Science, 92: 4541-4548. 46- Lu, D. L., H. F. Guo., and W. P. Lu. 2011. Effects of sowing date, variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize. Scientia Agricola, 44 (2): 263–270. 47- Ma, D., J. Li., C. Huang., F. Yang., Y. Wu., L. Liu., W. Jiang., Z. Jia., P. Zhang., X. Liu., and S. Zhang. 2019. Determination of the energy contents and nutrient digestibility of corn, waxy corn and steam-flaked corn fed to growing pigs. Asian-Australian Journal of Animal Science, 32 (10): 1573-1579. 48- McAllister, T. A., L. M. Rode., K. J. Cheng., and C. W. Forsberg. 1991. Selection of a sterilization method for the study of cereal grain digestion. Journal of Animal Science, 69: 3039-3043. 49- McAllister, T. A., R. Phillippe., L. M. Rode., and K. J. Cheng. 1993. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. Journal of Animal Science, 71: 205-212. 50- McDonough, C. M., B. J. Anderson., and L. W. Rooney. 1997. Structural Characteristics of Steam-Flaked Sorghum. Cereal Chemistry, 74: 542–547. 51- Medcalf, D., and K. Gilles. 1965. Effect of a Lyotropic Ion Series on the Pasting Characteristics of Wheat and Corn Starches. Starch, 18, 101-105. 52- Menke, H. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research Development, 28: 7–55. 53- Mohd, B. M. N., and M. Wootton. 1984. In vitro digestibility of hydroxypropyl maize, waxy maize and high amylose maize starches. Starch, 36: 273-275. 54- National Research Council (NRC) (2001). Nutrient requirements of dairy cattle. 7th Edn., Washington, D.C., National Academy Press. P: 450. 55- Ngonyamo-Majee, D., R. D. Shaver., J. G. Coors., D. Sapienza., and J. G. Lauer. 2008b. Relationships between kernel vitreousness and dry matter degradability for diverse corn germ plasm. II. Ruminal and post-ruminal degradabilities. Animal Feed Science and Technology, 142: 259-274. 56- Ngonyamo-Majee, D., R. D. Shaver., J. G. Coors., D. Sapienza., D. E. S. Correa., J. G. Lauer., and P. Berzaghi. 2008a. Relationships between kernel vitreousness and dry matter degradability for diverse corn germplasm. I. Development of near-infrared reflectance spectroscopy calibrations. Animal Feed Science and Technology, 142: 247-258. 57- Ngonyamo-Majee, D., R. D. Shaver., J. G. Coors., D. Sapienza., J. G. Lauer. 2009. Influence of single-gene mutations, harvest maturity and sample processing on ruminal in situ and post-ruminal in vitro dry matter and starch degradability of corn grain by ruminants. Animal Feed Science and Technology, 151, 240–250. 58- Office of Business Planning, Statistics and Research (OBPSR). 2016. Iran Foreign Trade Performance Report. www. Tpo.ir. Page 11. (In Persian) 59- Owens, F. 2007. Corn genetics and animal feeding value. Pioneer Hi-Bred International, Inc., Johnston, I A. 60- Owens, F. N., D. S. Secrist., W. J. Hill., D. R. Gill. 1997. The effect of grain source and grain processing on performance of feedlot cattle: a review. Journal of Animal Science, 75: 868-79. 61- Panozzo, J. F., and H. A. Eagles. 1998. Cultivar and environmental effects on quality characters in wheat: I. Starch. Australian Journal of Agriculture Research, 49: 757–766 62- Pashaei, S., V. Razmazar., and R. Mirshekar. 2010. Gas production: A proposed in vitro method to estimate the extent of digestion of a feedstuff in the rumen. Journal of Biology Science, 10: 573-580. 63- Paterson. J. L., A. Hardacre., P. Li., and M. A. Rao. 2001. Rheology and granule size distribution of corn starch dispersions from two genotypes and grown in four regions. Food Hydrocolloids, 15: 453–459. 64- Peron, A., and C. E. Gilbert. 2011. Differences between corn: a study of origin and harvests. Asian feed technical. Poultry feed quality conference. Kuala Lumpur. 65- Philippeau, C., and B. Michalet-Doreeau. 1997. Influence of genotype and stage of maturity of maize on rate of ruminal starch degradation. Animal Feed Science and Technology, 68: 25-35. 66- Philippeau, C., C. Martin., and B. Michalet-Doreau. 1999b. Influence of grain source on ruminal characteristics and rate, site, and extent of digestion in beef steers. Journal of Animal Science, 77: 1587–1596. 67- Philippeau, C., F. Le Deschault de Monredon., and B. Michalet-Doreau. 1999a. Relationship between ruminal starch degradation and the physical characteristics of corn grain. Journal of Animal Science, 77: 238–243. 68- Ramos, B. M. O., M. Championb., C. Poncet., I. Y. Mizubuti., and P. Nozi`ere. 2009. Effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Animal Feed Science and Technology, 148: 253–266. 69- Rehman, Z. U., F. Habib., and S. I. Zafar. 2002. Nutritional changes in maize (Zea mays) during storage at three temperatures. Food Chemistry, 77: 197-201. 70- Rooney, L. W., and R. I. Pflugfelder. 1986. Factors affecting starch digestibility with special emphasis on sorghum and corn. Journal of Animal Science, 63: 1607-1623. 71- Sangeeta, G., and R. B. Grewal. 2018. Physical and chemical properties of corn varieties (HQPM-1 and HQPM-7). International Journal of Chemical Studies, 6 (3): 3380-3382. 72- SAS Institute. 2009. SAS/STAT Users Guide. SAS Inst., Inc., Cary, NC. 73- Shiri. M. R., F. Azizi., M. Abaspour., H. Fakhimi., A. Badali., M. Jalil., and A. Kasraei. 2016. Comparison of the performance of the new Single Cross 704 hybrid with the Single Cross 702. Agricultural Research, Education and Promotion Organization, R 43978: 6-7. (In Persian) 74- Simmonds, D. H., K. K. Barlow., and C. W. Wrigley. 1973. The biochemical basis of grain hardness in wheat. Cereal Chemistry, 50: 553–562. 75- Song, G. L., D. F. Li., X. S. Piao., F. Chi., and W. J. Yang. 2003. Apparent ileal digestibility of amino acids and the digestible and metabolizable energy content of high-oil corn varieties and its effects on growth performance of pigs. Archive of Animal Nutrition, 57: 297-306. 76- Soulski, F. W., and A. M. Cadden. 1982. Composition and physiological properties of several sources of dietary fiber. Journal of Food Science, 47: 1472-1477. 77- Subuh, A. M. H., T. G. Rowan., T. L. J. Lawrence. 1996. Effect of heat or formaldehyde treatment on the rumen degradability and intestinal tract apparent digestibility of protein in soya-bean meal and in rapeseed meals of different glucosinolate content. Animal Feed Science and Technology, 57: 139-152. 78- Taylor, C. C., and M. S. Allen. 2005. Corn grain endosperm type and brown midrib 3 corn silage: Feeding behavior and milk yield of lactating cows. Journal of Dairy Science, 88: 1425-1433. 79- Theodorou, M. K., B. A. Williams., M. S. Dhanoa., A. B. McAllan., and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics ofruminant feeds. Animal Feed Science and Technology, 48: 185–197. 80- Theurer, C. B. 1986. Grain processing effects on starch utilization by ruminants. Journal of Animal Science, 63: 1649-1662. 81- Thompson, D. L., M. D. Jellum., and C. T. Young. 1973. Effect of controlled temperature environments on oil content and on fatty acid composition of corn oil. Journal of American Oil Chemists Society, 50: 540-542. 82- Van zyl. J. H. C. 2017. The effect of maize vitreousness and a starch binder on in vitro fermentation parameters and starch digestibility in dairy cows. PhD thesis. Stellenbosch University. Department of Animal Sciences. Faculty of AgriScience. 83- Weatherburn, W. M. 1967. Phenol-hypochlorite reaction for determination of ammonia. Annual Chemistry, 39: 971–975. 84- Wilson, J. D., D. B. Bechtel., T. C. Todd., and P. A. Seib. 2006. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chemistry, 83: 259–268. 85- Zhang, H. Y., R. Q. Gao., and S. T. Dong. 2011. Anatomical and physiological characteristicsassociated with corn endosperm texture. Agronomy Journal, 103: 1-7. 86- Zhang, L., J. W. Zhang., P. Liu., and S. T. Dong. 2011. Starch granule size distribution in grains of maize with different starch contents. Scientia Agricola, 44 (8): 1596–1602. 87- Zhang, L., Y. K. Li., Z. C. Li., Q. F. Li., M. B. Lyu., D. F. Li., and C. H. Lai. 2016. The Nutritive Values in Different Varieties of Corn Planted in One Location Fed to Growing Pigs over Three Consecutive Years. Asian Australas. Journal of Animal Science, 29 (12): 1768-1773. 88- Zhirkovaa, E. V., M. V. Skorokhodovaa., V. V. Martirosyanb., E. F. Sotchenkob., V. D. Malkinac., and T. A. Shatalovad. 2016. Chemical composition and antioxidant activity of corn hybrids grain of different pigmentation. Foods and Raw Materials, 4 (2): 85–91. 89- Zilic, S., M. Milasinovic., D. Terzic., M. Barac., and D. Ignjatovic-Micic. 2011. Grain characteristics and composition of maize specialty hybrids. Spanish Journal of Agricultural Research, 9(1): 230-241. 90- Zinn. R., F. Owens., and R. Ware. 2002. Flaking corn: processing mechanics, quality standards, and impacts on energy availability and performance of feedlot cattle. Journal of Animal Science, 80: 1145-56. | ||
آمار تعداد مشاهده مقاله: 668 تعداد دریافت فایل اصل مقاله: 765 |