Agamy, R.A., Mohamed, G.F., and Rady, M.M. 2012. Influence of the application of fertilizer type on growth, yield, anatomical structure and some chemical components of wheat (Triticum aestivum L.) grown in newly reclaimed Soil. Australian Journal of Basic and Applied Sciences 6 (3): 561-570.
Amal, G., Ahmed, Salwa Orabi., and Gomaa, A.M. 2010. Bio-organic farming of grain sorghum and its effect on growth, physiological and yield parameters and antioxidant enzymes activity. Journal of Agriculture and Biological Sciences 6(3): 270-279.
Amiri, A., Tohidinejad, E., Javaheri, M., and Mohammadinejad, G. 2010. Study the effect of planting time, cultivar and azetobacter on wheat (Triticum aesticum L.) yield at Bardsir region. Journal of Agriculture Crop Management 12 (1): 11-19. (In Persian with English Summary)
Ardalani, S., Saeidi, M., Jalali-Honarmand, S., Ghobadi, M.E., and Abdoli, M. 2015. Evaluation of grain yield and its relationship with remobilization of dry matter in bread wheat cultivars under water deficit stress at the post anthesis. Iranian Journal of Dryland Agriculture 2(2): 173-203. (In Persian with English Summary)
Arduini, I., Masoni, A., Ercoli, L., and Mariotti, M. 2006. Grain yield, and dry matter and nitrogen accumulation and remobilization indurumwheat as affected by variety and seeding rate. European Journal of Agronomy 25: 309–318.
Asseng, S., and Milroy, S.P. 2006. Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy 25: 119-128.
Bahrani, A., Tahmasebi Sarvestani, Z. 2007. Effect of rate and times of nitrogen application on accumulation and remobilization efficiency of flag leaf in two wheat cultivars. Journal of Science and Technology of Agriculture and Natural Resources 11(40): 147-155. (In Persian with English Summary)
Barbottin, A., Lecomte, C.H., Bouchard, C.H., and Jeuffroy, M.H. 2005. Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sciences 45: 1141-1150
Behl, R.K., Narula, N., Vasudeva, M., Sato, A., Shinano, T., and Osaki, M. 2006. Harnessing wheat genotype x Azotobacter strain interactions for sustainable wheat production in semi arid tropics. Tropics 15(1): 123-133
Biari, A., Gholami, A., and Asadi Rahmani, H. 2011. Effect of different plant growth promotion bacteri (Azotobacter, Azospirillum) on growth parameters and yield of field Maize. Journal of Water and Soil 25(1): 1-10. (In Persian with English Summary)
Das, A., Prasad, M., Shivay, Y.S., and Subha, K.M. 2004. Productivity and sustainability of cotton-wheat cropping system as influenced by urea, farmyard manuare (FYM) and Azotobacter. Journal of Agronomy and Crop Science 190: 298-304.
De Freitas, J. R. 2000. Yield and N assimilation of winter wheat (Triticum aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia 44: 97-104.
Devi, U., Singh, K.P., Kumar, S., and Sewhag, M. 2014. Effect of nitrogen levels, organic manures and Azotobacter inoculation on yield and economics of multi-cut oats. Forage Research 40 (1): 36-43.
Dordas, C. 2009. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. European Jounal of Agronomy 30: 129-139.
El Habbasha, S.F., Tawfik, M.M., and El Kramany, M.F. 2013. Comparative efficacy of different bio-chemical foliar applications on growth, yield and yield attributes of some wheat cultivars. World Journal of Agricultural Sciences 9 (4): 345-353.
Gardner, F.P., Brent Pearce, R., and Mitchell, R.L. 1999. Physiology of crop plants. Translated by Koocheki, A and Sarmadnia, G. ACECR of Mashhad, Iran. (In Persian)
Gebbing, T., Schnyder, H., and Kuhbauch, W. 1999. The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant, Cell and Environment 22: 851–858.
Ghezaani, M., Habibi, D., Pazoki, A., and Khavazi, K. 2011. Effect of some Azotobacter spices and humic acid on auxin hormone production, yield and yield components of wheat under different nitrogen levels. Iranian Journal of Agronomy and Plant breeding 8(2): 97-109. (In Persian with English Summary)
Good, A.G., Sherawat, A.K., and Muench, D.G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9: 597-605.
Heitholt, J.J., Croy, L.I., Maness, N.O., and Nguyen, HT. 1990. Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration. Field Crops Research 23: 133-144.
Idris, M. 2003. Effect of integrated use of mineral, organic N and Azotobacter on the yield, yield components and N-nutrition of wheat (Triticum aestivum L.). Pakistan Journal of Biological Sciences 6: 539-543.
Kader, M.K., Mmian, H., and Hoyue, M.S. 2002. Effects of Azotobacter inoculants on the yield and nitrogen uptake by wheat. Journal of Biological Sciences 2: 250–261.
Khavazi, K., and Malakouti, M.J. 2002. Necessity for the production of biofertilizers in Iran. Publish Agriculture Training. 589 p.
Khorramdel, S., Koocheki, A., Nassiri Mahallati, M., and Ghorbani, R. 2006. Application effects of biofertilizers on the growth indices of black cumin (Nigella sativa L.). Iranian Journal of Field Crops Research 6 (2): 285-293. (In Persian with English Summary)
Khosravi, H., and Mahmoudi, H. 2013. Evaluation of effects of Azotobacter inoculation and manure on growth of rainfed wheat. Journal of Soil Management and Sustainable 3(2): 205- 219. (In Persian with English Summary)
Koocheki, A., Nasiri Mahallati, M., Bakhshaei, S., and Davari, A. 2017. A meta-analysis on nitrogen fertilizer experiments on cereal crops in Iran. Journal of Agroecology 9(2): 296-313. (In Persian with English Summary)
Kumar, V., and Narula, N. 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28: 201- 305.
Malakouti, M.J., Naficy, M., and Motesharrezadeh, B. 2001. National effort for production of fertilizers as a step toward self-sufficiency and sustainable agriculture. Publish Agriculture Training, 420 p.
Malboubi, M.A. 1998. Plant molecular biology response to environmental factors. Procceding Articles 5th Congress Agro breed Sciences in Iran. P. 11.
Martre, P., Porter, J.R., Jamieson, P.D., and Triboi, E. 2003. Modeling grain nitrogen accumulation and protein composition to understand sink/source regulations of nitrogen remobilization for wheat. Plant Physiology 133: 1959-1967.
Mirzakhani, M., and Davari, M.R. 2017. The Effect of inoculation with Azotobacter and nitrogen levels on grain and Corn (Zea mays L.) yield components at simultaneous cropping system with legumes. Journal of Agroecology 9 (1): 63-75.
Mishra, M., Kumar, U., Mishra, P.K., and Prakash, V. 2010. Efficiency of plant growth promoting Rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Advances in Biological Research 4 (2): 92-96.
Mitsuru, O.S., Shinano, T.K., and Toshiak, T.D. 1991. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Science and Plant Nutrition 37 (1): 117-128.
Mohammadpoor, G., Ghobadi, M.E., Mohammadi, G.R., and Ghobadi, M. 2017. Effects of different amounts of nitrogen and azotobarvar on growth characteristics and yield of chickpea (Cicer arietinum L.). Journal of Agroecology 9 (1): 129-141. (In Persian with English Summary)
Mozaffari, A., Siadat, S.A., and Hashemi-Dezfuli, S.A. 2006. Effect of plant density on morphological and physiological characteristics of four cultivars of durum wheat (Triticum turgidum var. durum) under dryland of Sarableh region, Ilam. Journal of Research of Agricultural Science 2 (1): 47-51. (In Persian with English Summary)
Naseri, R., and Mirzaei, A. 2010. Response of yield and yield components of Safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirillum and different nitrogen levels under dry land condition. American-Eurasian Journal of Agricultural and Environmental Sciences 9 (4): 445-449.
Naseri, R., Azadi, S., Rahimi, M.J., Maleki, A., and Mirzaie, A. 2013. Effects of inoculation with Azotobacter chroococcum and Pseudomonas Putida on yield and some of important agronomic traits in barley (Hordeum vulgar L.). International Journal of Agronomy and Plant Production 4 (7): 1602-1610.
Naseri, R., Moghadam, A., Darabi, F., Hatami, A., and Tahmasebei, G.R. 2013. The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (SC704) as a second cropping in western Iran. Bulletin of Environment, Pharmacology and Life Sciences 2 (10): 104- 112.
Niu, J.Y., Gan, Y.T., Zhang, J.W., and Yang, Q.F. 1998. Post anthesis dry matter accumulation and redistribution in spring wheat mulched with plastic film. Crop Science 38: 1562-1568.
Papakosta, D.K., and Gagianas, A.A. 1991. Nitrogen and dry matter accumulation, remobilization and losses for Mediterranean wheat during grain filling. Agronomy Journal 83: 864–870.
Przulj, N., and Momcilovic, V. 2001. Genetic variation for dry matter andnitrogen accumulation and translocation in two-rowed spring barley. II. Nitrogen translocation. European Journal of Agronmy 15: 255-265.
Rawson, H.M., and Evans, L.T. 1971. The contribution of stem reserves to grain development in a range of cultivars of different height. Australian Journal of Agricultural Resarch 22: 851-863.
Rjaee, S., Alikhani, H., and Raiesi, F. 2007. Effect of plant growth promoting potentials of Azotobacter chroococcum native strains on growth, yield and uptake of nutrients in wheat. Journal of Water and Soil Science 11 (41): 285-297. (In Persian with English Summary)
Robert, N., Hennequet, C., and Berard, P. 2001. Dry matter and nitrogen accumulation in wheat kernel: Genetic variation in rate and duration of grain filling. Journal of Genetic and Breeding 55: 297-305.
Rostami, M.A., and Giriaei, H. 1998. Nitrogen cocentration profiles in wheat and its relationship to grain protein. Iranian Journal Agriculture Sciences 29: 447-453. (In Persian with English Summary)
Shahraki, M., Dahmardeh, M., Khamari, E., and Asgharzadeh, A. 2016. Effects of Azotobacter and Azospirillum and levels of manure on quantitative and qualitative traits of Safflower (Carthamus tinctorius L.). Journal of Agroecology 8(1): 59-69. (In Persian with English Summary)
Sharifi, R. S., Khavazi, K., and Gholipouri, A. 2011. Effect of seed priming with plant growth promoting Rhizobacteria (PGPR) on dry matter accumulation and yield of maize (Zea mays L.) hybrids. International Research Journal of Biochemistry and Bioinformatics 1 (3): 76-83.
Singh, R., Behl, R.K., Singh, K.P., Jain, P., and Narula, N. 2004. Performance and gene effects for wheat yield under inoculation of arbuscularmycorrhiza fungi and Azotobacter chroococcum. Haryana Agricultural University, Hisar, India. Plant, Soil and Environment 50 (9): 409-415.
Soleymanifard, A., and Seyedata, S. 2011. Effect of inoculation with bio-fertilizer in different nitrogen levels on yield and yields components of Safflower under dry land conditions. American-Eurasian Journal of Agricultural and Environmental Sciences 11 (4): 473-477.
Yasin, M., Ahmad, K., Mussarat, W., and Tanveer, A. 2012. Bio-fertilizers, substitution of synthetic fertilizers in cereals for leveraging agriculture. Crop and Environment 3: 62-66