تعداد نشریات | 49 |
تعداد شمارهها | 1,798 |
تعداد مقالات | 19,109 |
تعداد مشاهده مقاله | 8,393,529 |
تعداد دریافت فایل اصل مقاله | 5,723,892 |
تأثیر غلظتهای مختلف آهن و رژیم پلکانی آهن بر برخی صفات مورفولوژیکی، بیوشیمیایی و خصوصیات گلدهی گیاه همیشه بهار | ||
علوم باغبانی | ||
مقاله 12، دوره 34، شماره 2 - شماره پیاپی 46، شهریور 1399، صفحه 349-360 اصل مقاله (864.56 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jhorts4.v34i2.82363 | ||
نویسندگان | ||
زینب ایزدی1؛ عبدالحسین رضایی نژاد* 2 | ||
1گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان | ||
2دانشگاه لرستان | ||
چکیده | ||
به منظور بررسی اثرات افزایش تدریجی غلظت آهن در طی رشد گیاه همیشه بهار (Calendula officinalis)، آزمایشی با سه تیمار آهن و 4 تکرار در پاییز سال 1396 در گلخانه پژوهشی دانشکده کشاورزی دانشگاه لرستان انجام گرفت. تیمارها شامل غلظت ثابت 4 و 35 میکرومولار آهن (کلات آهن (III) – N, N – اتیلن دی آمین دی هیدروکسی فنیل استیک اسید (Fe(III)-EDDHA)) و تیمار سوم رژیم پلکانی بود که گیاهان در ابتدای کشت غلظت 4 میکرومولار آهن را دریافت و هر هفته دو میکرومولار به غلظت آهن دریافتی اضافه میشد. در نهایت غلظت آهن دریافتی به 26 میکرومولار رسید. نتایج حاکی از آن بود که از نظر صفات حجم ریشه و فعالیت آنزیم پراکسیداز گیاهان تحت تیمار 4 میکرومولار آهن برتری نشان دادند. اما بالاترین بیوماس مربوط به تیمار 35 میکرومولار آهن و رژیم پلکانی بود. در حالی که بیشترین شاخص کلروفیل a وb ، کلروفیل a+b و کاروتنوئید، وزن خشک ریشه و گل، عمر گل، تعداد گل و وزن تر گل اول در گیاهان تحت رژیم پلکانی آهن ملاحظه شد. به علاوه بالاترین و پایینترین میزان فتوسنتز "در مرحله دوم اندازهگیری" (بهترتیب، 2/12 و 5/4 میکرومول بر متر مربع برثانیه) و تعرق (بهترتیب، 9/1 و 8/0 میلیمول بر متر مربع بر ثانیه) مربوط به گیاهان تحت رژیم پلکانی آهن بود. لذا رژیم پلکانی بعنوان روش مناسب جهت تغذیه آهن در گیاه همیشه بهار در کشت بدون خاک قابل توصیه است. | ||
کلیدواژهها | ||
پارامترهای فتوسنتزی؛ رنگدانههای فتوسنتزی؛ گیاهان زینتی | ||
مراجع | ||
1. Abadia J., Vazquez S., Rellan-Alvarez R., El-Jendoubi H., Abadia A., Alvarez-FernAndez A., and Lopez-Millan A.F. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry, 49:471-482.
2. Adamski J.M., Danieloski R., Deuner S., Braga E.J., de Castro L.A., and Peters J.A. 2012. Responses to excess iron in sweet potato: impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologiae Plantarum, 34:1827-1836.
3. Buege J.A., and Aust S.D. 1978. Microsomal lipid peroxidation. Methods Enzyme, 52:302-310.
4. Chakraborty B., Singh P.N., Shukla A., and Mishra D.S. 2012. Physiological and biochemical adjustment of iron chlorosis affected low-chill peach cultivars supplied with different iron sources. Physiology and Molecular Biology of Plants, 18:141-148.
5. El-Jendoubi H., Vazquez S., Calatayud A., Vavpetic P., Vogel-Mikus K., Pelicon P., Abadia J., Abadia A., and Morales F. 2014. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Frontiers in Plant Science, 5:1-16.
6. Kabir A.H., Rahman M.M., Haider S.A., and Paul N.K. 2015. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environmental and Experimental Botany, 112:16-26.
7. Kong J., Dong Y., Xu L., Liu S., and Bai X. 2014. Role of exogenous nitric oxide in alleviating iron deficiency induced peanut chlorosis on calcareous soil. Journal of Plant Interactions, 9: 450-459.
8. Li D., Wang C., Liu W., Peng Z., Huang S., Huang J. and Chen S. 2016. Estimation of litchi (Litchi chinensis Sonn.) leaf nitrogen content at different growth stages using canopy reflectance spectra. European Journal of Agronomy, 80:182-194.
9. Li X., Ma H., Jia P., Wang J., Jia L., Zhang T., Yang Y., Chen H., and Wei, X. 2012. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicology and Environment Safety, 86:47-53.
10. Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148:350-382.
11. Lu Y., Yang X., Li R., Li S., and Tong Y. 2015. Effects of different potassium fertilizer application periods on the yield and quality of Fuji apple. Ying Yong Sheng Tai Xue Bao= The journal of Applied Ecology, 26:1179-1185.
12. MacAdam J.W., Nelson C.J., and Sharp R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99:872-878.
13. Najafi-Ghiri M., Ghasemi-Fasaei R., and Farrokhnejad E. 2013. Factors affecting micronutrient availability in calcareous soils of Southern Iran. Arid Land Research and Management, 27:203-215.
14. Pang W., Crow W., Luc J., McSorley R., Giblin-Davis R., Kenworthy K., and Kruse J. 2011. Comparison of water displacement and WinRHIZO software for plant root parameter assessment. Plant Disease, 95:1308-1310.
15. Pavlovic J., Samardzic J., Maksimović V., Timotijevic G., Stevic N., Laursen K.H., Hansen T.H., Husted S., Schjoerring J.K., and Liang Y. 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytologist, 198:1096-1107.
16. Pirzad A., and Shokrani F.2012. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Applied Sciences Journal, 18:1203-1208.
17. Romera F.J., Garcia M.J., Alcantara E., and Perez-Vicente R. 2011. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants. Plant Signaling & Behavior, 6:167-170.
18. Roosta H.R., Jalali M., and Ali Vakili Shahrbabaki S.M. 2015. Effect of nano Fe-chelate, Fe-Eddha and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentrations of four varieties of lettuce (lactuca Sativa L.) in NFT system. Journal of Plant Nutrition, 38:2176-2184.
19. Santos C.S., Roriz M., Carvalho S.M., and Vasconcelos M.W. 2015. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). Frontiers in Plant Science, 6:1-12.
20. Satoh S. 2011. Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. Journal of The Japanese Society for Horticultural Science, 192:127-135.
21. Sepahvand K., Rezaei Nejad A., and Hosseini S. 2017. Effect of ascorbic acid on some morphological and physiological characteristics of Pelargonium graveolens under iron deficiency. Iranian Journal of Horticultural Science, 48:545-554. (in Persian)
22. Shaiful I.M., Hasanuzzaman M., Rokonuzzaman M., and Nahar K. 2009. Effect of split application of nitrogen fertilizer on morphophysiological parameters of rice genotypes. International Journal of Plant Production, 3:51-62.
23. Vigani G., Zocchi G., Bashir K., Philippar K., and Briat J-F. 2013. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in plant science 18: 305-311.
24. Yang G., Li J., Liu W., Yu Z., Shi Y., Lv B., Wang B., and Han D. 2015. Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Scientia Horticulturae, 183: 77-86. | ||
آمار تعداد مشاهده مقاله: 709 تعداد دریافت فایل اصل مقاله: 560 |