تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,493 |
تعداد مشاهده مقاله | 9,277,835 |
تعداد دریافت فایل اصل مقاله | 6,509,972 |
برآورد میزان تابش خورشیدی با استفاده از محصولات دمای سطح زمین سنجنده MODIS و مدل شبکه عصبی | ||
آب و خاک | ||
مقاله 10، دوره 28، شماره 3، شهریور 1393، صفحه 616-624 اصل مقاله (816.81 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v0i0.39508 | ||
نویسندگان | ||
سعید امامی فر* ؛ امین علیزاده | ||
دانشگاه فردوسی مشهد | ||
چکیده | ||
برآورد درست مقدار تابش رسیده به سطح زمین (Rs ) به عنوان یکی از پارامترهای مهم در مدل های بیلان انرژی، شبیه سازی رشد گیاهان و تبخیر- تعرق اهمیت زیادی دارد. اغلب مدل های پیش بینی تابش رسیده به سطح زمین با استفاده از داده های ماهواره ای، مبتنی بر دمای سطح زمین هستند. در این مطالعه دقت برآورد تابش خورشیدی، با استفاده از چهار مدل مختلف شبکه عصبی (با نام های ANN1، ANN2،ANN3 وANN4 )، با ورودی محصولات دمای سطح زمین سنجنده مودیس (مدل های1و2 مبتنی بر محصولاتMOD11A1 و مدل های 3و4 مبتنی بر محصولات MYD11A1) در ترکیب با تابش برون زمینی (Ra) و نسبت ساعت آفتابی (n/N) مورد بررسی قرار گرفت. نتایج نشان داد که هر چهار مدل هوشمند شبکه عصبی با همبستگی خوبی (85 R2>/) توانستند مقدار تابش رسیده به سطح زمین را برآورد کنند. لیکن مدل های مبتنی بر محصولات MOD11A1 دارای دقت بالاتری نسبت به مدل های مبتنی بر محصولات MYD11A1 هستند. مدل شبکه عصبیANN1 (مبتنی بر محصولات MOD11A1 ، نسبت ساعت آفتابی و تابش برون زمینی) با ضریب تعیین (R2) برابر 9332/ و جذر میانگین مربعات خطا (RMSE) برابر 4448/1 مگاژول بر متر مربع در روز در برآورد تابش خورشیدی نسبت به مدل های دیگر دارای دقت بالاتری است. همچنین نتایج نشان داد که مدل شبکه عصبیANN2 ( مبتنی بر جذر تغییرات دمای محصولات MOD11A1 و تابش برون زمینی) در مقایسه با مدل هارگریوز و سامانی که مبتنی بر دادههای دمای هوا و تابش برون زمینی است، با دقت بیشتری تابش رسیده به زمین را برآورد می کند. | ||
کلیدواژهها | ||
تابش خورشیدی؛ سنجنده مودیس؛ دمای سطح زمین؛ مدل شبکه عصبی | ||
مراجع | ||
1- رحیمی خوب ع.، صابری پ.، بهبهانی س.م.ر. و نظری فر م.ه. 1389. برآورد تابش خورشید رسیده به سطح زمین با استفاده از تصاویر ماهواره نوا و روابط آماری در جنوب شرق تهران. مجله علوم وفنون کشاورزی و منابع طبیعی، علوم آب وخاک. سال پانزدهم. شماره پنجاه و ششم
2- منهاج م.ب. 1379.هوش محاسباتی (مبانی شبکه های عصبی). جلد اول، انتشارات دانشگاه پلی تکنیک. 715ص
3- Allen R.G., Pereira L.S., Raes D. and Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper No.56. FAO, Rome.
4- Almorox J. and Hontoria C. 2004. Global solar radiation estimation using sunshine duration in Spain. Energy Convers. Manag.45: 1529-1535.
5- Angstrom A.K. 1924. Solar and terrestrial radiation. Quarterly Journal of Royal Meteorological Society,50:121-125.
6- Belcher B.N. and DeGaetano A.T. 2007. A revised empirical model to estimate solar radiation using automated.
7- Coll C., Caselles V., Sobrino J.A. and Valor E. 1994. On the atmospheric dependence of the split-window equation for land surface temperature. International Journal of Remote Sensing; 15: 102-105.
8- Emamifar S., Rahimikhoob A. and Noroozi A.A. 2013. Daily mean air temperature estimation from MODIS landsurface temperature products based on M5 model tree. International Journal of Climatology.
9- Hargreaves, G.H. 1994. Simplified coefficients for estimating monthly solar radiation in North America and Europe. Departmental Paper, Dept. of Biol. and Irrig. Eng., Utah State Univ., Logan, Utah.
10- Hargreaves, G. H. and Z. A. Samani. 1998. Estimating potential evapotranspiration. J. Irrig. D. Eng. 108: 230-225.
11- Iziomon, M.G. and Mayer H. 2002. Assessment of some global solar radiatio parameterizations. 64(2): 1631-1643.
12- Ozan S¸ enkal.2010. Modeling of solar radiation using remote sensing and arti ficial neural network in Turkey. Energy. 35: 4795-4801.
13- Peter E.T. and Steven W.R. 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric. Forest Meteorol. 3: 211-228.
14- Qin J., Chen Z., Yang K., Liang S. and Tang W. 2011. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Appl. Energy 88, 2480-2489.
15- Rahimikhoob A. 2010. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew. Energy. 35, 2131-2135.
16- Samani Z. 2000. Estimation solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 126(4): 265-267.
17- Shengpan L., Nathan J., Moore Joseph P. Messina Mark H., DeVisser Jiaping W. 2012. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. International Journal of Applied Earth Observation and Geoinformation 18: 128–140.
18- Vancutsem C., Ceccato P., Dinku T., Connor S.J. 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 114 (2), 449–465.
19- Wan Z. 1999. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.3, NASA contract NAS 3137-5 (Institute for Computational Earth System Science)
20- Wan Z.M., Zhang Y.L., Zhang Q.C., and Li Z.L. 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectro-radiometer data. Remote Sensing of Environment, 83 (1-2), 163-180.
21- Yan H., Zhang J.H., Hou Y.Y. and He Y.B. 2009. Estimation of air temperature from MODIS data in east China. Int. J. Remote Sens. 30 (23), 6261–6275. | ||
آمار تعداد مشاهده مقاله: 293 تعداد دریافت فایل اصل مقاله: 387 |