Azmi M., and Araghinejad S. 2012. Developed K-nearest neighbor method for river flow prediction. Journal of Water and Wastewater, 2: 108-119.
2- Alfieri L., Thielen J., and Pappenberger F. 2012. Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. Journal of Hydrology, 424: 143-153.
3- Casdagli M. 1992.Chaos and deterministic versus stochastic nonlinearmodeling.Journal of the Royal Statistical Society, Series B (Methodological), 54(2): 303-328.
4- Chatfield C. 2001. Prediction intervals, in Principles of Forecasting: AHandbook for Researchers and Practitioners, edited by J. Armstrong, Springer, New York.
5- Fan F. M., Collischonn W., Meller A., and Botelho L.C.M. 2014. Ensemble streamflow forecasting experiments in a tropical basin: The Sao Francisco river case study. Journal of Hydrology, In Press.
6- Hampel F.R. 1974.The influence curve and its role in robust estimation.Journal of the American Statistical Association, 346: 383-393.
7- Herr H.D., and Krzysztofowicz R. 2010. Bayesian ensemble forecast of river stages and ensemble size requirements. Journal of Hydrology, 387: 151–164.
8- Kantz H., and Schreiber T. 1997.Nonlinear Time Series Analysis.CambridgeUniv.Press, New York.
9- Kember G., Flower A.C., and HolubeshenJ. 1993. Forecasting river flow using nonlinear dynamics.Stochastic Hydrology and Hydraulics, 7: 205–212.
10- Krzysztofowicz R. 1999. Bayesian theory of probabilistic forecasting viadeterministichydrologic model, Water Resources Research, 35(9), 2739-2750.
11- Kuczera G., and Parent E. 1998. Monte Carlo assessment of parameteruncertainty in conceptual catchment models: The Metropolis algorithm, Journal of Hydrology, 211: 69-85.
12- Laio F., PorporatoA. Revelli R., and RidolfiL. 2003. A comparison ofnonlinear flood forecasting methods, Water Resources Research, 39(5).
13- Montanari A., and BrathA. 2004. A stochastic approach for assessing theuncertainty of rainfall-runoff simulations.Water Resources Research, 40(1).
14- Pande P., McKee M., and Bastidas L.A. 2009.Complexity-based robust hydrologic prediction.Water Resources Research, 45, W10406.
15- Phoon K. K., Islam M. N., Liaw C. Y., and Liong S.Y. 2002. Practicalinverse approach for forecasting nonlinear hydrological time series. Journal of HydrologicEngineering, 7(2): 116-128.
16- Porporato A., and Ridolfi L. 1997. Nonlinear analysis of river flow timesequences. Water Resources Research, 33(6): 1353– 1367.
17- Regonda S.K., Rajagopalan B., Lall M., Clark U., and Moon Y.I. 2005.Local polynomial method for ensemble forecast of time series. NonlinearProcesses Geophysics, 12(3):397-406.
18- Regonda S.K., Rajagopalan B., Clark M., and Zagona E. 2006. A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resources Research, 42, W09404.
19- Silvillo J.K., Ahlquist J.E., and Toth Z. 1997. An ensemble forecasting primer. Weather and Forecasting, 12: 809-818.
20- Sivakumar B. 2000. Chaos theory in hydrology: Important issues andinterpretations. Journal of Hydrology, 227:1-20.
21- Sharma A., and Lall U. 1999. A nonparametric approach for daily rainfall simulation. Mathematics and Computers in Simulation, 48: 361-371.
22- Tamea S., Laio F., and Ridolfi L. 2005. Probabilistic nonlinear prediction of river flows. Water Resources Research, 41, W09421.
23- Todini E. 2004. Role and treatment of uncertainty in real-time floodforecasting. Hydrological Processes, 18(14): 2743-2746.
24- Wu C.L., and Chau K.W. 2010. Data-driven models for monthly streamflow time series prediction. Engineering Applications of Artificial Intelligence, 23:1350–1367.