1- Riahi-Madvar, H., et al., An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS. Expert Systems with Applications, 2009. 36(4): p. 8589-8596.
2- Mahmoudian Shooshtari, M., principles of open channel flow. Vol. 2. 2003, Ahvaz: Shahid Chamran University. 486.
3- Baghbanpour*, S. and S. M. Kashefipour, Numerical Modeling of Suspended Sediment Transport in Rivers (Case Study: Karkheh River). JWSS - Isfahan University of Technology, 2012. 16(61): p. 45-58.
4- Mirbagheri, S., M. Abaspour, and K. Zamani, Mathematical modeling of water quality in river systems. 2009.
5- Mahdavi, A., S.M. Kashefipour, and M.H. Omid, Effect of sorption process on cadmium transport. Proceedings of the Institution of Civil Engineers - Water Management, 2013. 166(3): p. 152-162.
6- Benedini, M. and G. Tsakiris, Water quality modelling for rivers and streams. 2013: Springer Science & Business Media.
7- Szymkiewicz, R., Numerical Solution of the Advection Equation, in Numerical Modeling in Open Channel Hydraulics. 2010, Springer Netherlands. p. 219-261.
8- Parsaie, A. and A. Haghiabi, The Effect of Predicting Discharge Coefficient by Neural Network on Increasing the Numerical Modeling Accuracy of Flow Over Side Weir. Water Resources Management, 2015. 29(4): p. 973-985.
9- Parsaie, A., A. Haghiabi, and A. Moradinejad, CFD modeling of flow pattern in spillway’s approach channel. Sustainable Water Resources Management, 2015. 1(3): p. 245-251.
10- Parsaie, A., H. Yonesi, and S. Najafian, Predictive modeling of discharge in compound open channel by support vector machine technique. Modeling Earth Systems and Environment, 2015. 1(2): p. 1-6.
11- Parsaie, A. and A. Haghiabi, Computational Modeling of Pollution Transmission in Rivers. Applied Water Science, 2015: p. 1-10.
12- Kashefipour, S.M. and A. Roshanfekr, Numerical modelling of heavy metals transport processes in riverine basins. 2012: INTECH Open Access Publisher.
13- Kashefipour, S.M., B. Lin, and R.A. Falconer, Dynamic modelling of bacterial concentrations in coastal waters: effects of solar radiation on decay. 2002.
14- Ataie-Ashtiani, B., D.A. Lockington, and R.E. Volker, Truncation errors in finite difference models for solute transport equation with first-order reaction. Journal of Contaminant Hydrology, 1999. 35(4): p. 409-428.
15- Ataie-Ashtiani, B. and S.A. Hosseini, Error analysis of finite difference methods for two-dimensional advection–dispersion–reaction equation. Advances in Water Resources, 2005. 28(8): p. 793-806.
16- Naseri Maleki, M. and S.M. Kashefipour, Application of Numerical Modeling for Solution of Flow Equations and Estimation of Water Quality Pollutants in Rivers (Case Study: Karkheh River). Civil and Environmental Engineering, 2012. 42.3(68): p. 51-60.
17- Givehchi, M., M. Faghfour Maghrebi, and J. Abrishami, Application of Depth-Averaged Velocity Profile for Estimation of Longitudinal Dispersion in Rivers. Ab va Fazilab Journal, 2009. 20(4): p. 91-96.
18- Riahi Modvar, H. and S.A. Ayyoubzadeh, Estimating Longitudinal Dispersion Coefficient of Pollutants Using Adaptive Neuro-Fuzzy Inference System. Ab va Fazilab Journal, 2008. 19(3): p. 34-46.
19- IZADINIA, E. and K.J. ABEDI, INVESTIGATION OF LONGITUDINAL DISPERSION COEFFICIENT IN RIVERS. 2011.
20- Banejad, H., et al., Numerical Simulation of the Flow and Contaminant Transport in Groundwater, Case Study: Nahavand Plain Aquifer. Water and Soil Science, 2013. 23(2): p. 43-57.
21- Shen, C., et al., Estimating longitudinal dispersion in rivers using Acoustic Doppler Current Profilers. Advances in Water Resources, 2010. 33(6): p. 615-623.
22- Seo, I.W. and T.S. Cheong, Predicting Longitudinal Dispersion Coefficient in Natural Streams. Journal of Hydraulic Engineering, 1998. 124(1): p. 25-32.
23- Atkinson, T. and P. Davis, Longitudinal dispersion in natural channels: l. Experimental results from the River Severn, UK. Hydrology and Earth System Sciences Discussions, 2000. 4(3): p. 345-353.
24- Davis, P. and T. Atkinson, Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, UK. HYDROL EARTH SYST SC, 2000. 4(3): p. 373-381.
25- Davis, P., T. Atkinson, and T. Wigley, Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, UK. Hydrology and Earth System Sciences Discussions, 2000. 4(3): p. 355-371.
26- Zeng, Y. and W. Huai, Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-environment Research, 2014. 8(1): p. 2-8.
27- Najafzadeh, M. and A.A. Sattar, Neuro-Fuzzy GMDH Approach to Predict Longitudinal Dispersion in Water Networks. Water Resources Management, 2015. 29(7): p. 2205-2219.
28- Sattar, A.M.A. and B. Gharabaghi, Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology, 2015. 524(0): p. 587-596.
29- Azamathulla, H. and A. Ghani, Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams. Water Resources Management, 2011. 25(6): p. 1537-1544.
30- Azamathulla, H.M. and F.-C. Wu, Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Computing, 2011. 11(2): p. 2902-2905.
31- Noori, R., et al., How Reliable Are ANN, ANFIS, and SVM Techniques for Predicting Longitudinal Dispersion Coefficient in Natural Rivers? Journal of Hydraulic Engineering, 2015. 0(0): p. 04015039.
32- Noori, R., et al., Predicting the Longitudinal Dispersion Coefficient Using Support Vector Machine and Adaptive Neuro-Fuzzy Inference System Techniques. Environmental Engineering Science, 2009. 26(10): p. 1503-1510.
33- Noori, R., et al., A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environmental Progress & Sustainable Energy, 2011. 30(3): p. 439-449.
34- Kashefipour, S.M. and R.A. Falconer, Longitudinal dispersion coefficients in natural channels. Water Research, 2002. 36(6): p. 1596-1608.