1- Ali Ehyayi M., and Behbehanizadeh A.A. Methods of Soil Analysis. Soil and Water Research Institute Press, Tehran.
2- Ali H., Khan E., and Anwar Sajad M. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91:869-881.
3- Babaeian E., Homaee M., and Rahnemaie R. 2012. Enhancing phytoextraction of lead contaminated soils by carrot (Daucus carrota) using synthetic and natural chelates. Journal of Water and Soil, 26:607-618. (in Persian with English abstract)
4- Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., and Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31:860-865.
5- Chen K.F., Yeh T.Y., and Lin C.F. 2012. Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): hydroponic and pot experiments. ISRN Ecology, 2012:1-12.
6- Chen Y.X., Lin Q., Luo Y.M., He Y.F., Zhen S.J., Yu Y.L., Tian G.M., and Wong M.H. 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50:807-811.
7- Cheng G., Ma X., Sun X., and Zhao S. 2012. Effects of EDTA, EDDS and citric acid on growth of maize and uptake of lead by maize in contaminated soil. Advanced Materials Research, 534:227-280.
8- Chorom M., and Alizadeh A. 2009. Comparison of synthetic chelates and compost at enhancing phytoextraction of Cd, Ni and Pb from contaminated soil under canola cultivation. Journal of Water and Soil, 23:20-29. (in Persian with English abstract)
9- Duarte B., Freitas J., and Cacador I. 2011. The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia, 764:169-177.
10- El-tayeb M.A., El-enay A.E., and Ahmed N.L. 2006. Salycilic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation, 50:191-199.
11- Emami A. 1996. Methods of Plant Analysis. Soil and Water Research Institute Press, Tehran.
12- Kabata pendias A. 2010. Trace Elements in Soils and Plants. 4th edition. CRC Press.
13- Karczewska A., Orlow K., Kabala C., Szopka K., and Galka B. 2011. Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Communications in Soil Science and Plant Analysis, 42:1379–1389.
14- Lesage E., Meers E., Vervaeke P., Lamsal S., Hopgood M., Tack F.M., and Verloo M.G. 2005. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. International Journal of Phytoremediation, 7:143-152.
15- Luo C., Shen Z., and Li X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59:1-11.
16- Marschner H. 1995. Mineral Nutrition of Higher Plants. (2nd ed.). Academic Press, London.
17- Muhammad D., Chen F., Zhao J., Zhang G., and Wu F. 2009. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. International Journal of Phytoremediation, 11:558-574.
18- Nascimento C.W.A., Amarasiriwardena D., and Xing B. 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140:114-123.
19- Nowack B., Schulin R., and Robinson B.H. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science and Technology, 40:5225-5232.
20- Saifullah., Meers E., Qadir M., de Caritat P., Tack F.M.G., Du Laing G., and Zia M.H. 2009. EDTA-assisted Pb phytoextraction. Chemosphere, 74:1279–1291.
21- Schmidt U. 2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. Journal of Environmental Quality, 32:1939-54.
22- Seregin I.V., and Kozhevnikova A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53:257-277.
23- Shu W.S., Ye Z.H., Lan C.Y., Zhang Z.Q., and Wong M.H. 2003. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environmental Introduction 26:389-394.
24- Sillen L.G., and Martell A.E. 1964. Stability constants of metal ion complexes. Special Publication No. 17. The Chemical Society. Londan.
25- Sinhal V.K., Srivastava A., and Singh V.P. 2010. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). Journal of Environmental Biology, 31:255-259.
26- Tafvizi M., Savaghebi GH.R., and Motasharezadeh B. 2012. Study of lead (Pb) phytoextraction potential in different maize varieties. p. 86. Proceedings of the First National Conference of Phytoremidation, 16 Feb. 2012. International Center for Science, High Technology and Environmental Sciences. Kerman, Iran.
27- Taheri Pur A.A. 2013. Effect of EDTA and citric acid on phytoremediation of copper and zinc by three corn cultivares. M.Sc. Dissertation, Soil Science Department, ShahreKord University.
28- Thayalakumaran T., Robinson B.H., Vogeler I., Scotter D.R., Clothier B.E., and Percival H.J. 2003. Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant and Soil, 254:415–423.
29- Wang H., Shun X.A., Wen B., Zhang S., and Wang Z.J. 2004. Responses of an oxidative enzymes to accumulation of copper in a copper hyper accumulator of communis. Environmental Contamination Toxicology, 47:185-192.