تعداد نشریات | 49 |
تعداد شمارهها | 1,845 |
تعداد مقالات | 19,508 |
تعداد مشاهده مقاله | 9,290,321 |
تعداد دریافت فایل اصل مقاله | 6,520,451 |
تعیین مهم ترین پارامترهای مؤثر خاک بر فراهمی فسفر در دشت سیستان به روش ارتباط وزنی در شبکه های عصبی | ||
آب و خاک | ||
مقاله 12، دوره 29، شماره 6، اسفند 1394، صفحه 1674-1687 اصل مقاله (376.96 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v29i6.39564 | ||
نویسندگان | ||
حمزه میر؛ احمد غلامعلی زاده آهنگر؛ اسماء شعبانی* | ||
دانشگاه زابل | ||
چکیده | ||
فسفر به عنوان یک عنصر ضروری در تولید محصولات کشاورزی دارای اهمیت است. از سوی دیگر توانایی آن در القای کمبود عناصر کم-مصرف ضروری و اثرات منفی آن بر محیط زیست، سبب توجه بیشتر به این عنصر شده است. از آنجا که ویژگی های خاک از عوامل مهم در واکنش فسفر در خاک هستند، پژوهش حاضر جهت بررسی و تعیین مهم ترین ویژگی های خاک موثر بر فراهمی فسفر با استفاده از روش های رگرسیونی و شبکههای عصبی مصنوعی در دشت سیستان انجام شد. بدین منظور تعداد 200 نمونه خاک از اراضی دشت سیستان تهیه و مقادیر فسفر قابل جذب و سایر پارامترهای فیزیکو شیمیایی آن اندازه گیری گردید. نتایج بیانگر آن است که روش شبکه عصبی دارای دقت بیشتری در برآورد فسفر قابل جذب نسبت به روش رگرسیون چند متغیره خطی میباشد، به گونهای که شبکه عصبی پرسپترون چند لایه با آرایش 1-6-4 نزدیک به 90 درصد از تغییرات فسفر قابل جذب را با استفاده از برخی ویژگیهای خاک (درصد رس، ماده آلی، کربنات کلسیم و اسیدیته) پیشبینی نمود ولی معادله رگرسیون حاصله تنها توانست 43 درصد از تغییرات فسفر را توجیه کند. نتایج کمی کردن اهمیت متغیرها به روش وزن ارتباطی نشان داد عامل pH بیشترین مشارکت را در تغییرپذیری فسفر در منطقه مورد مطالعه دارد. به عبارت دیگر، مقادیر بالای pH مهم ترین عامل محدود کننده فراهمی فسفر در خاک های دشت سیستان است. | ||
کلیدواژهها | ||
رگرسیون چند متغیره؛ روش وزن ارتباطی؛ شبکه عصبی؛ فسفر قابل جذب | ||
مراجع | ||
Agyare W.A., and Park S.J. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone Journal, 6: 423-431.
2- Ayoubi S., Mehnatkesh A., Jalalian A., Sahrawat K.L., and Gheysari M. 2014. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Archives of Agronomy and Soil Science, 60 (5): 625-638.
3- Bertrand I., Holloway R.E., Armstrong R.D., and Mclaughlin M.J. 2003. Chemical characteristics of phosphorus in alkaline soils from southern Australia. Australian Journal of Soil Research, 41: 61-76.
4- Besalatpour A.A., Ayoubi S., Hajabbasi M.A., Mosaddeghi M.R., and Schulin R. 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111: 72-79
5- Bocco, M., Willington, E. and Arias M., 2010. Comparison of regression and neural networks models to estimate solar radiation. Chilean Journal of Agricultural Research, 70: 428-435.
6- Carreira J.A., Vinegla B., and Lajtha K. 2006. Secondary CaCo3 and precipitation of P-Ca compounds control the retention of soil P in and ecosystems. Journal of Arid Environments, 64(3): 460-473.
7- Chahooki M.A.Z. 2010. Data Analysis in Natural Resources Research using SPSS Software. Jihad e Daneshgahi, Tehran. (in Persian)
8- Dadgar M., Aliha M., and Faramarzi E. 2011. Relationship between available phosphorus and some soil physical and chemical characteristics in Absard Plain (Damavand Province). Iranian journal of Range and Desert Reseach, 18 (3): 498-504. (in Persian with English abstract)
9- Dahiya I.S., Richter J., and Malik R.S. 1984. Soil spatial variability: A review. International Journal of Tropical Agriculture, 11:1-102.
10- Delgado A., Madrid A., Kassem S., Andreu L., and Campillo M. C. 2002. Phosphorus fertilizer recovery from calcareous soils amended with humic and fluvic acids. Journal of Plant and Soil, 245: 277-286.
11- Dia X., Huo Z., and Wang H. 2011. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121:441-449.
12- Hallajnia A., Fotovat A., and Khorasani R. 2006. Availability of soil phosphorus resulting from different amounts of phosphorus fertilizer in soils of Hamedan province. Journal of Science and Technology of Agriculture and Natural Resources, 4(10): 121-132. (in Persian)
13- Hattab N., Hambli R., Motelica-Heino M., Bourrat X., and Mench M. 2013. Application of neural network model for the prediction of chromium concentration in phytoremediated contaminated soils. Journal of Geochemical Exploration, 128: 25-34.
14- Jalali M., and Kolahchi Z. 2005. Availability of soil phosphorus resulting from different amounts of phosphorus fertilizer in soils of Hamedan province. Soil and Water Science, 19(1): 53-60. (in Persian)
15- Kemp S.J., Zaradic P., and Hansen F. 2007. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecological Modelling, 204: 326-334.
16- Keshavarzi A., Sarmadian F., Sadeghnejad M., and Pezeshki P. 2010. Developing pedotransfer functions for estimating some soil properties using artificial neural network and multivariate regression approaches. ProEnvironment, 3: 322-330.
17- Kumar M., Raghuwanshi N.S., Singh R., Wallender W.W., and Pruitt W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering-ASCE, 128: 224-233.
18- Kuo S. 1996. Total organic phosphorus. p. 869-919. In D.L. Sparks (ed.) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA. Madison, WI.
19- Malakouti M.J., and Homaee M. 2003. Soil Fertility in Arid and Semiarid Regions “Problems and Solutions”. 2nd Ed. Tarbiat Modarres University, Tehran. (in Persian)
20- Menhaj M.B. 2012. Fundamentals of Neural Networks. No. 1. Amirkabir University, Tehran. (in Persian)
21- Minasny B., Hopman J., Harter W.T., Eching S.O., Toli A., and Denton M.A. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of American Journal, 68: 417-429.
22- Mohebbi S.M.J. 2014. Investigation of relationships between available phosphorus, potassium and some soil properties in agricultural lands of Varamin- Iran. International Journal of Agriculture and Biosciences, 3(1): 7-12.
23- Mostashari M., Ardalan M., Karimian N., Rezaei H., and Mirhoseini H. 2009. Distribution of organic forms of phosphorus and its relation with soil properties in some calcareous soils of Qazvin province. Journal of Soil Research (Soil and Water Science), 23(1): 11-22. (in Persian)
24- Olden J.D., and Jackson D.A. 2002. Illuminating the black box approach for understanding variable contributions in artificial neural networks randomization. Ecological Modelling, 154: 135-150.
25- Olden J.D., Joy M.K., and Death R.G. 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178: 389-397.
26- Oskoie P.A., Takrimi Nia S.M., and Kahneh E. 2014. Correlations between content and some soil properties in groundnut cultivation, north of Iran. International Journal of Plant, Animal and Environmental Sciences, 4(2): 288-290.
27- Panday S., Thapa K.B., and Oli I.B. 2012. Correlations of available phosphorus and potassium with soil pH and organic matter content at different soil reactions categories in soils of western development region, Nepal. Journal of Chemical, Biological and Physical Sciences, 3:128-133.
28- Piri H., and Ansari H. 2013. Investigating drought in Sistan plain and its effect on Hamoun international wetland. Talab, 4(15): 63-73. (in Persian)
29- Rezaee Pazhand H. 2001. Application of Probability and Statistics in Water Resources. 1st Edition. Sokhan Gostar, Mashhad. (in Persian)
30- Salaridini A.A. 2008. Soil Fertility. University of Tehran, Tehran. (in Persian)
31- Singh R.P., and Mishra S.K. 2012. Available macro nutrients (N, P, K and S) in the soils of Chiraigaon block of district Varanasi (U.P.) in relation to soil characteristics. Indian Journal of Scientific Research, 3(1): 97-100.
32- Soil Survey Staff. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Rep. 42. Version 3.0. U.S. Gov. Print, Washington DC.
33- Soltani S.M., and Samadi A. 2003. Different forms of phosphorus in some soils of Fars province and their relations with soil physic-chemical properties. Journal of Science and Technology of Agriculture and Natural Resources, 3: 119-127. (in Persian)
34- Taghizadeh Asl Z., Dordsipour E., Gholizadeh A.L., and Kiani F. 2009. Investigating the relation between plant available phosphorus and some of soil properties in soils of south of Gorganroud. Proceedings of the 11th Iranian Soil Science Congress, 12–13 Jul. 2009. Gorgan, Iran. (in Persian)
35- Tajik S., Ayoubi S., and Nourbakhsh F. 2012. Prediction of soil enzymes activity by digital terrain analysis: comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29(8): 798-806. | ||
آمار تعداد مشاهده مقاله: 223 تعداد دریافت فایل اصل مقاله: 402 |