1- Ayars J.E., Corwin D.L.and Hoffman. G.J. 2012. Leaching and root zone salinity control. ASCE Manual and Report Engineering Practice No 71 Agricultural Salinity Assessment and Management (2nd Edition), ASCE Riston.Chapter 12: 371-403.
2- Ayers R.S. and Westcott D.W. 1985. Water quality for agriculture. Irrigation and Drainage paper, No. 29, Rev. 1, FAO, Rome.
3- Bressler E., and Hoffman G.J. 1986. Irrigation management for soil salinity control: Theories and tests. Soil Science Society America. Journal, 50:1552-1560.
4- Dirksen C.m and Augustijn D.C. 1988. Root water uptake function for nonuniform pressure and osmotic potentials. AgricultureAbstracts, pp. 188.
5-Ekren S., Sonmez C., Ozcakal E., KukulKurttas Y.S., Bayram E.andGurgulu H. 2012. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimumbasilicum L.). Agricultural Water Management, 57 (2): 111-126.
6- Esmaili E., Homaee M., and Malakouti M.J. 2005. Interactive effect of salinity and Nitrogen fertilizers on growth and composition of Sorghum. Iranian Journal of Soil and Waters Sciences 19 (1): 131-146. (in Persian with English abstract).
7- Esmaili E., Kapourchal S.A., Malakouti M.J., and Homaee M. 2008. Interactive effects of Salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil Environment, 54 (12): 537-546.
8- Francois L.E. 1996. Salinity effects on four sunflower hybrids. Agron Journal, 88: 215-219.
9- Hanson B.R., and Grattan S.R. 1999. Agricultural salinity and drainage.University of California, Irrigation Program, 328 pp.
10- Homaee M. 1999. Root water uptake under non-uniform transient salinity and water stress. PhD dissertation, Wageningen Agricultural University, The Netherlands, 173 pp.
11- Homaee M. 2002. Plants response to salinity.Iranian National Committee on Irrigation and Drainage (IRNCID).No. 58. (in Persian).
12- Homaee M., and Feddes R.A. 2002. Modeling the sink term under variable soil water osmotic and pressure heads. Develop Water Science, 47: 17-24.
13- Homaee M., Dirksen C., and Feddes R.A. 2002a. Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57: 89-109.
14- Homaee M., DirksenC., and Feddes R. A. 2002b. Simulation of root water uptake. II. Nonuniform transient water stress using different reduction functions. Agricultural Water Management, 57(2): 111-126.
15- Homaee M., Feddes R. A. and Dirksen C. 2002c. Simulation of root water uptake. III. non-uniform transient combined salinity and water stress. Agricultural Water Management, 57: 127-144.
16- Homaee M., Feddes R. A. and Dirksen C. 2002d.A macroscopic water extraction model for non-uniform transient salinity and water stress. Soil Science SocietyAmeraica Journal, 66: 1764-1772.
17- Homaee M. and Schmidhalter U. 2008. Water integration by Plants root under non-uniorm soil salinity. Irrigation Science, 27: 83-95.
18- Hosseini Y., Homaee M., Karimian N.A. and Saadat S. 2009a. Modeling of Canola response to combined salinity and nitrogen stresses. Journal of Science and Technology of Agriculture and Natural Resources (Water and Soil Science) 12 (46): 721-734. (in Persian with English abstract).
19- Hosseini Y., Homaee M., Karimian N.A., and Saadat S. 2009b. The effects of phosphorus and salinity on growth, nutrient concentrations, and water use efficiency in Canola (Brassica napus L.). Agricultural Research (Water, Soil and Plant in Agriculture) 8 (4): 1-18. (in Persian with English abstract).
20- Hosaini Y., Homaee M., Karimian N.A., and Saadat S. 2009. Modeling vegetative stage response of Canola (Brassica napus L.) to combined salinity and boron stresses. International Journal of Plant Production, 4 (3):175-186.
21- Jacobsen O.J., and Schjonning P. 1993. A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. Journal of Hydrology, 5: 147–157.
22- Jalali V.R., Homaee M., and Mirnia S. Kh. 2008a. Modeling Canola response to salinity on vegetative growth stages. Journal of Agricultural Engineering Research 8 (4): 95-112. (In Persian with English abstract).
23- Jalali V.R., Homaee M., and Mirnia S. Kh. 2008b. Modeling Canola Response to Salinity in Productive Growth Stages. Journal of Science and Technology of Agriculture and Natural Resources (Water and Soil Science) 12 (44): 111-121. (in Persian with English abstract).
24- Jalali V. R. and Homaee M. 2010. Modeling the effect of salinity application time of root zone on yield of canola (Brassica napus L.). Journal of Crop Improvement 12 (1): 29-40. (in Persian with English abstract).
25- Jamieson P. D., Porter J. R. and Wilson D. R. 1991. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27, 337–350.
26- Kiani A.R., Mirlatifi M., Homaee M. and Cheraghi A. 2004. Effect of different irrigation regimes and salinity on wheat yield in Gorgan region. Journal of Agricultural Sciences and Natural Resources 11(1): 79-89. (in Persian with English abstract).
27- Kiani A.R., Mirlatifi M., Homaee M. and Cheraghi A. 2005a. Water use efficiency of wheat under salinity and water stress. Journal of Agricultural Engineering Research 6 (24): 47-64. (in Persian with English abstract).
28- Kiani A.R., Mirlatifi M., Homaee M. and Cheraghi A. 2005b. Determination of the best watersalinity functions for wheat production in north of Gorgan. Journal of Agricultural Engineering Research 6 (25): 1-14. (in Persian with English abstract).
29-Kiani A.R., Homaee M. and Mirlatifi M. 2006. Evaluation yield reduction functions under salinity and water stress conditions. Iranian Journal of Soil Research (Formerly Soil and Water Sciences) 20 (1): 73-83. (in Persian with English abstract).
30- Loague K., and Green R.E. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7: 51-73.
31-Maas E.V., and Grattan S. R. 1999. Crop yields as affected by salinity. In R. W. Skaggs and J. van Schilfgaarde (eds) Agricultural Drainage. Agron.Monograph 38.ASA, CSSA, SSA, Madison, WI pp. 55–108.
32- Maas E.V., and Hoffman G. J. 1977. Crop salt tolerance-current assessment. Journal of Irrigation and Drainage Engineering(ASCE), 103 (IR2): 115-134.
33- Miller J. D. and Gaskin G. 1997. The development and application of the theta probes soil water sensor. MLURI.Technical note, 312 pp.
34- Omidbaigi R. 2009. Production and processing of medicinal plants.Astan Quds Razavi publications, No. 149, 397 pp. (in Persian).
35- Oster J. D. 1994. Irrigation with poor quality water.Agricultural Water Management,25(3):271-297.
36- Ponizovsky A.,Chudinova S. and Pachepsky Y. 1999. Performance of TDR calibration models as affected by soil texture. Journal of Hydrology, 218: 35-43.
37- Rhoades J.D. Kandiah A. and Mashali A. M. 1992. The use of saline waters for crop production. Irrigation and Drainage paper, No. 48, FAO, Rome.
38- Richards L. A. 1931. Capillary conduction of liquids in porous mediums.Physics, 1: 318-333.
39- Robinson D.A., Gardner C.M.K., and Cooper J.D. 1999. Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. Journal of Hydrology, 223: 198–211.
40- Saadat S., Homaee M. and Liaghat A. M. 2005. Effect of soil solution salinity on the germination and seedling growth of sorghum plant. Iranian Journal of Soil and Waters Sciences 19 (2): 243-254. (in Persian with English abstract).
41- Sepaskhah A. R. and Beirouti Z. 2009. Effect of irrigation interval and water salinity on growth of madder (Rubiatinctorum L.).International Journal of Plant Production, 3(3):1-16.
42- Shalhevet J. 1994. Using water of marginal quality for crop production: major issues. Agricultural Water Management, 25(3):233-269.
43- Shenker M., Ben-Gal A. and ShaniU. 2003. Sweet corn response to combined nitrogen and salinity environmental stresses. Plant Soil, 256: 139-147.
44- Steppuhn H. van Genuchten M. Th. and Grieve C. M. 2005a. Crop ecology, management and quality: Root-Zone Salinity: I. Selecting a Product-Yield Index and Response Function for Crop Tolerance. Crop Science, 45(1):209-220.
45- Steppuhn H. van Genuchten M.Th. and Grieve C.M. 2005b. Crop ecology, management and quality: Root-Zone Salinity: II. Indices for Tolerance in Agricultural Crops.Crop Science,45(1):221-232.
46- van Genuchten M.Th. 1983. Analyzing crop salt tolerance data: Model description and user’s manual. UDSA, ARS, U.S. Salinity Lab. Research Report No. 120. U.S. Gov. Printing Office, Washington, DC.
47- van GenuchtenM.Th., and Gupta S.K. 1993. A reassessment of the crop tolerance response function. Journal Indian Society Soil Science, 41(4):730– 737.
48- van Genuchten M. Th. and HoffmanG. J. 1984.Analysis of crop production. In: I. Shainberg and J. Shalhevet (eds), Soil salinity under irrigation. pp. 258-271. Springer-Verlag.
49- Willmott C.J., Akleson G.S., Davis R.E., Feddema J. J., Klink K.M., Legates D.R., Odonnell J. and Rowe C. M. 1985. Statistics for the evaluation and comparison of models. Journal of Geophysics Research, 90: 8995–9005.