1- Alp M., and Cigizoglu, H.K. 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling & Software, 22: 2-13.
2- Aqil M., Kita I., Yano A., and Nishiyama, S. 2007. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology, 337: 22-34.
3- Aytek A., and Kisi, O. 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology, 351: 288-298.
4- Danandehmehr A., Oliaie E., Ghorbani M.A. 2010. Suspended sediment load prediction based on river discharge and genetic programming method. Watershed Management Researches Journal (Pajouhesh & Sazandegi), 88: 44-54. (in Persian with English abstract)
5- Dastorani M.T., Azimi Fashi Kh., Talebi A., Ekhtesasi M.R. 2012. Estimation of suspended sediment using artificial neural network (case study: Jamishan Watershed in kermanshah). Journal of Watershed Management Research, 6: 66-74. (in Persian with English abstract)
6- Daubechies I. 1992. Ten lectures on wavelets. Society for Industrial Mathematics.
7- Ferreira C. 2001. Gene expression programming a new adaptive algorithm for solving problems.Complex Systems, 13(2): 87–129.
8- Hassanzadeh Y., Lotfollahi-Yaghin M.A., Shahverdi S., Farzin S., Farzin N. 2013. De-noising and prediction of time series based on wavelet algorithm and chaos theory (case study: SPI drought monitoring index of Tabriz city). Iran-water resources Research, 3: 1-13. (in Persian with English abstract)
9- Kakaei Lafdani E., Moghaddam Nia A., and Ahmadi A. 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478: 50 –62.
10- Kisi O. 2010. Daily suspended sediment estimation using neuro-wavelet models. International Journal of Earth Sciences, 99: 1471 –1482.
11- Kisi O., and Cimen M. 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology, 399: 132 –140.
12- Kisi O., and Shiri J. 2011. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resource management, 25: 3135 –3152.
13- Luk K.C., Ball J.E., and Sharma A. 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting.Journal of Hydrology, 227:56-65.
14- Melesse A.M., Ahmad S., McClain M.E., Wang X., and Lim Y.H. 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98: 855-866.
15- Nagy H.M., Watanabe K., and Hirano M. 2002. Prediction of Sediment Load Concentration in Rivers usingArtificial Neural Network Model. Journal of Hydraulic Engineering, 128: 588-595.
16- Nourani V., Yahyavi Rahimi A., and Hassan Nejad F. 2013. Conjunction of ANN and threshold based wavelet de-noising approach for forecasting suspended sediment load. International Journal of Management & Information Technology, 3(1): 9 –26.
17- Partal T., and Cigizoglu H.K. 2008. Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. Journal of Hydrology, 358: 317 –331.
18- Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., and Nourani V. 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407: 4916-4927.
19- Rajaee T., Nourani V., Zounemat-Kermani M., and Kisi O. 2011. River suspended sediment load prediction: Application of ANN and Wavelet conjunction model. Journal of Hydrologic Engineering, 16(8): 613-627.
20- Salajegheh A., Fathabadi A. 2008. Estimation of the suspended sediment loud of Karaj River using fuzzy logic and neural networks.Journal of Range and Watershed Management, 62: 271-282. (in Persian with English abstract)
21- Yu H.H., and Jenq N.H. 2002. Handbook of Neural Network Signal Processing. CRC Press.