تعداد نشریات | 49 |
تعداد شمارهها | 1,846 |
تعداد مقالات | 19,518 |
تعداد مشاهده مقاله | 9,306,493 |
تعداد دریافت فایل اصل مقاله | 6,540,077 |
بازسازی شرایط محیطی گذشته با استفاده از نشانگرهای زیستی و کانیشناسی رسی در رسوبات لسی شمال شرق ایران | ||
آب و خاک | ||
مقاله 8، دوره 30، شماره 1 - شماره پیاپی 45، اردیبهشت 1395، صفحه 149-161 اصل مقاله (693.03 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v30i1.33135 | ||
نویسندگان | ||
علی شهریاری* 1؛ فرهاد خرمالی1؛ مارتین کهل2؛ علی رضا کریمی3؛ مریم موسوی دستنایی4؛ ایوا لهندورف5 | ||
1دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
2کلن | ||
3فردوسی مشهد | ||
4دانشگاه صنعتی اصفهان | ||
5دانشگاه بُن | ||
چکیده | ||
رسوبات لسی شمال ایران، منعکسکننده چندین چرخه تغییر اقلیم و تکامل سیمای سرزمین برای دوره میانی تا انتهایی کواترنری هستند، از اینرو جهت بازسازی شرایط محیطی (اقلیم و پوشش گیاهی) گذشته این مطالعه در دو توالی لس-پارینه خاک (آقبند و نوده) در استان گلستان، در شمال ایران انجام شد. برای این منظور از آزمایشات کانیشناسی رسی و نشانگرهای زیستی اِن-آلکان برای نخستین بار استفاده شد. نتایج کانیشناسی رسی در دو توالی لس- پارینه خاک نشان داد که کانیهای ایلیت، کلریت، اسمکتیت و کائولینیت کانیهای غالب در این رسوبات هستند. تغییرات کانیشناسی با مورفولوژی و تکامل خاک در افقهای مختلف همخوانی داشت، بهطوریکه کانیهای اسمکتیت در افقهای تکامل یافته پارینه خاکها به مقدار زیادتری تشکیل شدهاند. مطالعات نشانگرهای زیستی اِن-آلکان به خوبی تغییرات پوشش گیاهی در هر دو توالی را نشان داد. این تغییرات در توالی لس-پارینه خاک نوده شدیدتر بود بهصورتیکه در پارینه خاکهای خاکرخ 1 (افق Bk) و خاکرخ 2 (افق ABk) پوشش گیاهی از نوع چمنزار و بوتهزار (با غالبیت کانی ایلیت) به پوشش جنگلی در پارینه خاکهای خاکرخ 2 (افق AB و غالبیت اسمکتیت) و خاکرخ 3 (افق Btky و غالبیت اسمکتیت و حضور ورمیکولیت) تغییر میکند. نتایج نشان داد که همسویی تغییرات کانیشناسی رسی و نتایج نشانگرهای زیستی اِن-آلکان منعکسکننده شرایط اقلیمی و محیطی در زمان تشکیل این خاکها بوده و در بازسازی دقیقتر شرایط محیطی گذشته بسیار موثر هستند. | ||
کلیدواژهها | ||
اقلیم قدیمی؛ اِن-آلکان؛ توالی لس-پارینه خاک | ||
مراجع | ||
1- Amini Jahromi, H., Naseri, M.Y., Khormali, F., and Movahedi Naeini, S.A.R. 2008. Clay mineralogy of the soil formed on loess parent material in two regions of Golestan Province. Journal of Agricultural Sciences and Natural Resources.15:5.18-27.(in Persian)
2- Bai Y., Fang X.M., Nie J.S., Wang Y.L., and Wu F.L. 2009. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology, 271: 161–169.
3- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal. 54: 464-465.
4- Bronger A., Winter R., and Sedove S. 1998. Weathering and clay mineral formation in two Holocene soils and buried paleosols in Tadjikistan: towards a Quaternary paleoclimatic record in Central Asia. Catena, 34: 19-34.
5- Bull I.D., van Bergen P.F., Nott C.J., Poulton P.R., and Evershed R.P. 2000. Organic geochemical studies of soils from the Rothamsted Classical Experiments – V. The fate of lipids in different long-term experiments. Organic Geochemistry, 31: 389–408.
6- Djamali M., de Beaulieu J.L., Shah-hosseini M., Andrieu-Ponel V., Ponel P., Amini A., Akhani H., Leroy S.A.G., Stevens L., Lahijani H., and Brewer S. 2008. A late Pleistocene long pollen record from Lake Urmia, Iran. Quaternary Research, 69: 413–420.
7- Douglas L.A. 1989. Vermiculites. In: Dixon, J.B., Weed, S.B. (Eds.), Minerals in Soil Environments, second ed. Soil Science Society of America, Madison, WI, 635-674 pp.
8- Egli M., Mirabella A., and Sartori G. 2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology, 102: 307-324.
9- Frechen M., Kehl M., Rolf C., Sarvati R., and Skowronek A. 2009. Loess chronology of the Caspian Lowland in Northern Iran. Quaternary International, 128: 220-233.
10- Ghafarpour A. 2012. Evolution and characteristics of modern soils compared to underlain paleosols in a precipitation gradient in Golestan province. M.Sc. thesis. Soil science Dep. Gorgan University of agriculture sciences and natural resources. 82 pp.
11- Jackson M.L. 1975. Soil Chemical Analysis. Advanced Course. University of Wisconsin, College of Agriculture, Department of Soils, Madison, Wisconsin, USA.
12- Jeong G.Y., Hillier S., and Kemp R.A. 2011. Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75: 245–255.
13- Johns W.D., Grim R.E., and Bradley W.F. 1954. Quantitative estimation of clay minerals by diffraction methods. J. Sediment Petrology, 24: 242-251.
14- Karimi A., Frechen M., Khademi H., Kehl M., and Jalalian A. 2011. Chronostratigraphy of loess deposits in northeast Iran. Quaternary International, 234: 124–132.
15- Kehl M. 2009. Quaternary climate change in Iran – the state of knowledge. Erdkunde, 63: 1–17.
16- Kehl M. 2010. Loess, loess-like sediments, soils and climate change in Iran. Relief, Boden, Paläoklima 24, 208 pp.
17- Kehl M., Sarvati R., Ahmadi H., Frechen M., and Skowronek A. 2005. Loess paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalter und Gegenwart, 55: 149–173.
18- Khormali F., and Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, 38: 511-527.
19- Khormali F., and Kehl M. 2011. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. – Quaternary International, 234: 109–123.
20- Kittrick J.A., and Hope E.W. 1963. A procedure for particle size separation of soils for X-ray diffraction analysis. Soil Science, 96: 312-325.
21- Lei G.L., Zhang H.C., Chang F.Q., Pu Y., Zhu Y., Yang M.S., and Zhang W.X. 2009. Biomarkers of modern plants and soils from Xinglong Mountain in the transitional area between the Tibetan and Loess Plateaus. Quaternary International, 218: 143–150.
22- Mehra O.P., and Jackson M.L. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Minerals, 5: 317-327.
23- Muhs D.R. (2013). The geologic records of dust in the Quaternary. Aeolian Research, 9: 3–48.
24- National soil survey center .2012. Field book for describing and sampling soils, Ver. 3. U.S. department of agriculture, Natural resources conservation service.
25- Page A.L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, second ed. Agronomy Monographs, 9. ASA-SSA, Madison, Soil Sci. Soc. Am. J. 51: 1173-1179.
26- Pecsi M. 1990. Loess is not just the accumulation of dust. Quaternary International, 78: 1-12.
27- Schaetzl R.J. and Anderson S. 2005. Soils: Genesis and Geomorphology. Cambridge University Press. 833 pp
28- Schwark L., Zink K., and Lechterbeck J. 2002. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology, 30: 463–466.
29- Shahriari A., Khormali F. and Azarmdel H. 2012.Clay mineralogy of Mollisols and Mollisols-like soils as affected by physiography unit form on loess deposits in southern Gorgan River, Golestan province ,Journal of Water & Soil Conservation, 18(4) :80-63.
30- Sheldon N.D., and Tabor N.J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews, 95:1–52.
31- Soil Survey Staff. 2014. Keys to soil Taxonomy, 12th ed. U.S. department of agriculture, Natural resources conservation service.
32- Vlaminck S., Rolf C., Shahriari A., Khormali F., Frechen M., and Kehl M. 2013. The Loess-soil sequence at Now Deh (Northern Iran) and its palaeoclimatic implications deduced from magnetic susceptibility and grain size records. Research for desert margin regions Conference. February 2013. Rauischholzhausen, Germany.
33- Walkley A. and Blak I.A. 1934. An Examination of the method for determining Soil organic matter and a proposed modification of the Chromic Acid titration method. Soil Science, 34: 29-38.
34- Zech M., and Glaser B. 2008. Improved compound-specific ᵟ13C analysis of n-alkanes for application in palaeoenvironmental studies. Rapid Communications in Mass Spectrometry, 22 (2): 135-142.
35- Zech M., Rass S., Buggle B., Löscher M., and Zöller, L. 2012. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quaternary Research, 78: 226–235.
36- Zech M., Krause T., Meszner S., and Faust, D. 2013. Incorrect when uncorrected: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences - A case study from the Saxonian loess region, Germany. Quaternary International, 296: 108-116.
37- Zhou W., Xie S., Meyers P.A., and Zheng Y. 2005. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36: 1272–1284. | ||
آمار تعداد مشاهده مقاله: 319 تعداد دریافت فایل اصل مقاله: 266 |