Chen S.T., Yu P.S.2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340: 63-77.
2- Dogan E. 2009. Reference Evapotranspiration Estimation using adaptive neuro-fuzzy inference system, J. Irrig. and Dria. 58: 617-628.
3- Drake J.T. 2000. Communications phase synchronization using the adaptive network fuzzy inference system. Ph.D. Thesis, New Mexico State University, Las Cruces, New Mexico, USA.
4- Eswari S., Raghunath P.N., & Suguna K. 2008. Ductility performance of hybrid fibre reinforced concrete. American Journal of Applied Sciences. 5(9): 1257-1262.
5- Hamel L. 2009. Knowledge Discovery with Support Vector Machines, Hoboken, N.J. John Wiley.
6- Jang J.S. R. 1993. ANFIS: adaptive-network-based fuzzy inference system. Man and Cybernetics, IEEE Transactions on. 23(3): 665-685.
7- Jang J.S.R., Sun C.T., and Mizutani E. 1997. Neuro-fuzzy and Software Computing: a Computational Approach to Learning and Machine Intelligence. Prentice-Hall, New Jersey.
8- Jia Bing C. 2004. Prediction of daily reference evapotranspiration using adaptive neurofuzzy inference system. Trans of the Chinese society of Agricultural Engineering. 20:(4) 13-16.
9- Kisi O. 2007. Adaptive neurofuzzy computing technique for Evapotranspiration Estimation. J. Irrig. and Drain. 133:4. 368-379.
10- Kisi O., and Cimen M. 2010. Evapotranspiration modelling using support vector machines. Hydrological Sciences. 54(5): 918-928.
11- Moradi H., Tamana M., Ansari H., and Naderianfar M. 2011. Evaluating fuzzy inference systems for estimating hourly reference evapotranspiration (Case Study: Fariman). Journal of Water and Soil Conservation, 19(1): 153-168. (in Persian with English abstract)
12- Pai P.F., Hong W.C. 2007. A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21:819-827.
13- Sattari M.T., Nahrein F., and Azimi V. 2013. M5 Model Trees and Neural Networks Based Prediction of Daily ET0 (Case Study: Bonab Station). Iranian Journal of Irrigation and Drainage. 7(1): 104-113. (in Persian with English abstract)
14- Tabari H., Martinez C., Ezani A., and Hosseinzadeh Talaee P. 2013. Applicability of support vector machines and adaptive neuro- fuzzy inference system for modeling potato crop evapotranspiration. Irri Sci. 31(4): 575-588.
15- Vapnik V.N. 1998. Statistical Learning Theory. Wiley, New York.
16- Varvani H., Moradi M.A., and Varvani J. 2012. Monthly reference crop evapotranspiration estimation by regression tree models in different climates of Iran. Journal of Water Research in Agriculture. 27(4): 523-534. (in Persian with English abstract)
17- Yu P.S, Chen S.T., Chang I.F. 2006. Support vector regression for real-time flood stage forecasting. Hydrology, 328: 704-716.
18- Zare Abyaneh H., Gasemi A., Bayat Varkeshi M., Mohammadi K., and Sabziparvar A. A. 2008. Evaluation of Two Artificial Neural Network Software in Predict of Crop Reference Evapotranspiration. Journal of Water and Soil Science, 19(2): 201-212. (in Persian with English abstract).
19- Zare Abyaneh H., Bayat Varkeshi M., and Marofi S. 2010. Forecasting of garlic (Allium sativum L.) evapotranspiration by using multiple modeling. Journal of Water and Soil Conservation, 18(2): 141-158. (in Persian with English abstract)