1- Bozorg Haddad O., Afshar A., and Mariño M.A. 2011. Multireservoir optimisation in discrete and continuous domains, Proceedings of the Institution of Civil Engineers: Water Management, 164(2), 57-72.
2- Bozorg Haddad O., Fallah-Mehdipour E., Mirzaei-Nodoushan F., and Mariño M.A. 2014a. Discussion of A GA-based support vector machine model for the prediction of monthly reservoir storage, Journal of Hydrologic Engineering, DOI: 10.1061.(ASCE)HE.1943-5584.0001086.
3- Bozorg Haddad O., Moravej M., and Loaiciga H. 2014b. Application of the water cycle algorithm to the optimal operation of reservoir systems, Journal of Irrigation and Drainage Engineering, DOI: 10.1061.(ASCE)IR.1943-4774.0000832 ,04014064.
4- Camdevyren H., Demyr N., Kanik A., and Keskyn, S. 2005. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs, Ecological Modelling, 181 )4), 581-589.
5- Chiu D.Y., and Chen P.J. 2009. Dynamically exploring internal mechanism of stock market by fuzzy-based support vector machines with high dimension input space and genetic algorithm, Expert Systems with Applications, 36(2), 1240-1248.
6- Fallah-Mehdipour E., Bozorg Haddad O., and Mariño M.A. 2013. Prediction and simulation of monthly groundwater levels by genetic programming, Journal of Hydro-Environment Research, 7(4), 253-260.
7- Ghavidel S. Z.Z., and Montaseri M. 2014. Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin, Stochastic Environmental Research and Risk Assessment, 28(8), 2101-2118.
8- Johnson R.A., and Wichern D.W. 1982. Applied multivariate statistical analysis, Prentice Hall, No 3, Englewood Cliffs, SA.
9- Koza J. R. 1990. Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems, Department of Computer Science, Stanford University, 131pp.
10- Liu S., Tai H., Ding Q., Li D., Xu L., and Wei, Y. 2013, A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction, Mathematical and Computer Modelling, 58(3), 458-465.
11- Noori R., Ashrafi Kh., and Ajdarpour A. 2008. Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of Co: A case study of Tehran, Journal of Physics Earth Space, 34(1), 135-152.
12- Noori R., Karbassi A., and Salman Sabahi, M. 2010. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction, Journal of Environmental Management, 91(3), 767-771.
13- Noori R., Karbassi A. R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., and Gousheh M. G. 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3), 177-189.
14- Orouji H., Bozorg Haddad O., Fallah-Mehdipour E., and Mariño M.A. 2013. Modeling of water quality parameters using data-driven models, Journal of Environmental Engineering, 139(7), 947-957.
15- Ouyang, Y. 2005. Evaluation of river water quality monitoring stations by principal component analysis, Water Research, 39(12), 2621-2635.
16- Raghavendra N.S., and Deka P.C. 2014. Support vector machine applications in the field of hydrology: A review, Applied Soft Computing, 19, 372-386.
17- Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., and Nourani, V. 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models, Science of the Total Environment, 407(17), 4916-4927.
18- Singh K.P., Basant N., and Gupta S. 2011. Support vector machines in water quality management, Analytica Chimica Acta, 703(2), 152-162.
19- Soltani F., Kerachian R., and Shirangi E. 2010. Developing operating rules for reservoirs considering the water quality issues: Application of ANFIS-based surrogate models, Expert Systems with Applications, 37(9), 6639-6645.
20- Su J., Wang X., Liang Y., and Chen B. 2013. A GA-based support vector machine model for the prediction of monthly reservoir storage, Journal of Hydrologic Engineering, 19(7), 1430-1437.
21- Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. 2002. Least squares support vector machines, World Scientific Publishing, No. 4, Singapore.
22- Tabachnick B.G., and Fidell, L.S. 2001. Using multivariate statistics, Pearson, No. 2, 963 pp.
23- Tan G., Yan J., Gao C., and Yang, S. 2012. Prediction of water quality time series data based on least squares support vector machine, Procedia Engineering, 31, 1194-1199.
24- Vapnik V.N. 1995. The nature of statistical learning theory, Springer, New York, USA.
25- Wang W.C., Chau K.W., Cheng C.T., and Qiu L. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series, Journal of Hydrology, 374(3), 294-306.
26- Yoon H., Jun S.C., Hyun Y., Bae G.O., and Lee K.K. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, Journal of Hydrology, 396(1-2), 128-138.
27- Yunrong X., and Liangzhong J. 2009. Water quality prediction using LS-SVM with particle swarm optimization, Second International Workshop on Knowledge Discovery and Data Mining, IEEE 2009, Moscow, Russia, January 23-25.