تعداد نشریات | 49 |
تعداد شمارهها | 1,778 |
تعداد مقالات | 18,929 |
تعداد مشاهده مقاله | 7,808,436 |
تعداد دریافت فایل اصل مقاله | 5,106,108 |
مقایسه دقت مدلهای ونگنوختن و بروکز و کوری در شبیهسازی حرکت آب در بقایای لاشبرگهای کف جنگل توسط کد HydroGeoSphere | ||
آب و خاک | ||
مقاله 10، دوره 30، شماره 3 - شماره پیاپی 47، شهریور 1395، صفحه 984-996 اصل مقاله (358.72 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v30i3.43574 | ||
نویسندگان | ||
مجید هماپور گورابجیری* ؛ علی رسول زاده | ||
دانشگاه محقق اردبیلی | ||
چکیده | ||
در یک حوضه آبخیز جنگلی، بقایای کف جنگل شامل لاشبرگ ها بوده و نقش محیط متخلخل قبل از خاک معدنی را بازی می کند. خصوصیات هیدرولیکی بقایای کف جنگل تا حدودی ناشناخته بوده و نمی توان با روش های متداول برای خاک، آنها را اندازه گیری نمود. در این پژوهش برای شبیهسازی حرکت آب درلاشبرگ ها از مدل های منحنی مشخصه آبِ خاک و هدایت هیدرولیکی غیر اشباع ون گنوختن و بروکز و کوری همراه با کدHydroGeoSphere استفاده گردید. نمونه برداری از لاشبرگ ها در سه نوع لاشبرگ پهن برگ، سوزنی برگ و مخلوط، در جنگل های غرب استان گیلان و به صورت دست نخورده انجام گرفت. ابتدا با استفاده از روش معکوس، ضرایب مدل های ون گنوختن و بروکزوکوری برآورد شد. سپس با به کارگیری مدل های فوق الذکر، حرکت آب در لاشبرگ ها توسط کد HydroGeoSphere شبیه سازی گردید. مقادیر معیار های آماری شامل ریشه میانگین مربعات خطا ( )، میانگین خطای مطلق ( )، شاخص مطابقت اصلاح شده ( ) و ضریب کارآیی اصلاح شده ( ) به منظور مقایسهی دقت مدل های ون گنوختن و بروکز و کوری همراه با کد HydroGeoSpherدر شبیه سازی حرکت آب در لاشبرگ ها مورد استفاده قرار گرفتند. نتایج تجزیه آماری نشان داد کمترین حساسیت روش معکوس به پارامتر رطوبت باقیمانده در لاشبرگ ها می باشد. همچنین نتایج معیارهای آماری نشان داد، مدل ون گنوختن با ، ، و به ترتیب برابر با 2753/0، 1659/0، 8895/0 و 7726/0 نسبت به مدل بروکز و کوری با ، ، و به ترتیب 3400/0، 2228/0، 8378/0 و 6984/0، همراه با کد HydroGeoSphereبرای شبیه-سازی حرکت آب در لاشبرگ ها کارآمدتر می باشد. | ||
کلیدواژهها | ||
روش معکوس؛ محیط متخلخل؛ مدل های هیدرولیکی؛ معادله ریچاردز | ||
مراجع | ||
1- Augeard B., Assouline S., Fonty A., Kao C., and Vauclin M. 2007. Estimating hydraulic properties of rainfall induced soil surface seals from infiltration experiments and X-ray bulk density measurements. Journal of Hydrology, 341: 12-26.
2- Brooks R.H., and Corey A.J. 1964. Hydraulic properties of porous media. Hydrology. Paper 3. Colo State University, Fort Collins, Colo.
3- Catharina J.E., Nabuur,s G., Verburg P.H., and de Waal R.W. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implication for soil carbon inventories. Forest Ecology and Management, 256: 482-490.
4- Greiffenhagen A., Wessolek G., Facklam M., Renger M., and Stoffregen H. 2005. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma, 132: 182-195.
5- Kosugi K. 1997. A new model to analyze water retention characteristics of forest soils based on soil pore radius distribution. Journal of forest research, 2(1): 1-8.
6- Kosugi K., Mori K., and Yasuda H. 2001. An inverse modeling for the characterization of unsaturated water flow in an organic forest floor. Journal of Hydrology, 246: 96-108.
7- Marquardt D.W. 1963. An algorithm for least squares estimation of non linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441.
8- Mclaren R.G. 2004. GRID BUILDER. A pre-processor for 2-D, Triangular element, finite-element programs. Groundwater Simulation Group, University of waterloo, Waterloo. Ontario, Canada.
9- Ogee J., and Brunet Y. 2002. A forest floor model for heat and moisture including a liter layer. Journal of Hydrology, 255: 212-233.
10- Rasoulzadeh A. 2009. Evaluation of parameters estimation using inverse method in unsaturated porous media. 10th International Agricultural Engineering Conference (IAEC), 7-10 December, Thailand.
11- Rasoulzadeh A., and Homapoor Ghoorabjiri M. 2011. Estimation of hydraulic properties of forest floor using inverse method. International Agricultural Engineering Journal, 20(2): 976-979.
12- Rasoulzadeh A., and Homapoor Ghoorabjiri M. 2013. Comparing hydraulic properties of different forest floors. Hydrological Processes. DOI:10.1002/hyp.10006.
13- Redding T. E., Hannm K.D., Quideau S.A., and Devito K.J. 2005. Particle density of Aspen, Spruce, and Pine forest floor in Alberta, Canada. Soil Science Society of America Journal, 69: 1503-1506.
14- Salazar O., Wesstrom I., and Joel A. 2008. Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural Water Management, 95: 1135-1143.
15- Sato Y., Kumagai T.O., Kume A., Otsuki K., and Ogawa sh. 2004. Experimental analysis of litter layers- the effect of rainfall conditions and leaf shapes. Hydrological Processes, 18: 3007-3018.
16- Schaap M.G., Bouten W., and Verstraten J.M. 1997. Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology, 201: 368-383.
17- Sharratt B.S. 1997. Thermal conductivity and water retention of a black spruce forest floor. Soil Science Society of America Journal, 162: 576-682.
18- Therrien R., Mclaren R.G., and Sudicky E.A. 2008. HydroGeoSphere: A Three Dimensional model describing fully- integrated subsurface and surface flow and solute transport. University of Waterloo, Canada. pp 349.
19- van Genuchten M.Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898. | ||
آمار تعداد مشاهده مقاله: 206 تعداد دریافت فایل اصل مقاله: 172 |