1- Bobee B., and Ashkar F. 1988. Sundry Averages Method (SAM) for Estimating Parameters of the Log-Pearson Type 3 Distribution. INRS-Eau Publication, Quebec Canada, 30 pages.
2- Bowker AH., Gerald J., and Lieberman H. 1972. Engineering Statistics, Prentice-Hall, Second Edition.
3- Claudio A., Cannarozzo M., and Rosario Mazzola M. 2006. Multi-year drought frequency analysis at multiple sites by operational hydrology– A comparison of methods. Physics and Chemistry of the Earth, Parts A/B/C. 31(18): 1146-1163.
4- Dai AK., and Trenberth K. 1998. Palmer Drought servity. Global variation in drought and wet spells 1900-1950. Geophysical Research letter 253367.
5- Farajzadeh M. 2005. Drought (From concept to solution). Page 112. Armed Forces Geographical Organization. (In Persian with English abstract).
6- Fatehi-Peykani H. 2009. A statistical approach for distribution of wind speed. Seventh National Conference on Energy. Tehran. (In Persian with English abstract).
7- Griffiths GA. 1989. A theoretically based Wakeby distribution for annual flood series. Hydrological Sciences, journal, des sciences Hidrologiques, 34. pages 231-248.
8- Houghton JC. 1978. Birth of a parent: the Wakeby distribution for modeling flood flow. Water Resources Research, 14(6): 1105-1109.
9- Khalili K., Nazeri Tahrudi M., Abbaszadeh Afshar M., and Nazeri Tahrudi Z. 2014. Comparison different peak flow frequency distribution functions. Journal of Middle East Applied Science and Technology. Issue 7. Vol 4.
10- Kroll CN., and Voge RM. 2002. Probability distribution Of low stream flow series in the United states. Journal of hydrologic Engineering, 7(2), 137-146.
11- Kumar R., and Chatterjee C. 2005. Regional flood frequency analysis using L-moments for North Bahmaputra region of India. Journal of hydrologic Engineering, 10(1), 1-7.
12- Lee CY. 2004, Department of Soil and Water Conservation National Pingtung University of Science and Technology,Neipu,Pingtung Hsien 912, Taiwan (ROC).
13- Mosaedi A., Zanganeh M., Saman-Manesh H., and Karimirad A. 2009. Choose the bests distributions functions of 1 to 30 days discharges, the case study: Gonbad Kavous hydrometer station. Watershed's Fifth National Conference on Science and Engineering. (Sustainable management of natural disasters). Gorgan University. (In Persian with English abstract)
14- Nazeri Tahroudi M., and Khalili K. 2013. Investigation the SAM and Moments methods to estimation the Log-Pearson type III parameters (Case study: Urmia lake basin rivers). National Conference of Recession impact on water resources and soil water level in the Urmia Lake. Tabriz. (In Persian with English abstract)
15- Nazeri Tahroudi M., Gholamzadeh Bazarbash R., Nazeri Tahroudi Z., and Khalili K. 2013. Evaluation of the distribution models to estimation the peak discharge return period using the HYFRAN models (Case study: Babolrood River). National conference on applied research in science and engineering, Takestan. (In Persian with English abstract)
16- Nguyen VT. 2006. On regional estimation of floods for ungaged sites, Asia oceania geosciences society, McGill University, Singapore.
17- Serinaldi F., Bonaccorso B., Cancelliere A., and Grimaldi S. 2009. Probabilistic characterization of drought properties through copulas. Physics and Chemistry of the Earth, Parts A/B/C, 34(10): 596-605.
18- Shahmohammadi Z., Hagigatjo P., and Afrasiab P. 2001. Determined the number of long-term drought and wet years based on annual rainfall in Irene, Proceedings of the first conference examining ways to tackle water crisis, Zabol University. (In Persian with English abstract)