1- Afshar M.H. 2009. Elitist mutated particle swarm optimisation algorithms: application to reservoir operation problems, P I Civil Eng-Wat M; 162(6): 409- 417.
2- Afshar M. H. 2013. Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system. International Journal of Electrical Power & Energy Systems, 51, 71- 81.
3- Afshar M.H., and Moeini R. 2008. Partially and fully constrained ant algorithms for the optimal solution of large scale reservoir operation problems, Water Resour Manage; 22(12): 1835– 1857.
4- Afshar M. H., and Motaei I. 2011. Constrained big bang-big crunch algorithm for optimal solution of large scale reservoir operation problem. Int. Journal Optim. Civil Eng, 2, 357- 375.
5- Afshar A., Emami Skardi M. J., and Masoumi F. 2014. Optimizing water supply and hydropower reservoir operation rule curves: An imperialist competitive algorithm approach. Engineering Optimization, (ahead-of-print), 1- 18.
6- Bellman R.E. 1957. Dynamic Programming, Princeton University Press, Princeton, New Jersey.
7- Changa L.C., Chang F.J., Wang K.W., and Daib S.Y. 2010. Constrained genetic algorithms for optimizing multi-use reservoir operation, Journal Hydrology Engineering; 390(1-2): 66– 74.
8- Chiu Y.C., Chang L.C., and Chang F.J. 2007. Using a hybrid genetic algorithm-simulated annealing algorithm for fuzzy programming of reservoir operation, Hydrol Process; 21(23): 3162– 3172.
9- Dahe P.D., and Srivastava D.K. 2002. Multi reservoir multi yield model with allowable deficit in annual yield, Journal Water Research Pl-ASCE; 128(6): 406- 414.
10- Dorfman R. 1962. Mathematical Models: The Multi-Structure Approach, in Design of Water Resources Systems (edited by A. Maass), Harvard University Press, Cambridge, Massachusetts.
11- Esmin A. A., and Matwin S. 2013. HPSOM: a hybrid particle swarm optimization algorithm with genetic mutation. International Journal Innov Comput Inf Control (IJICIC), 9(5), 1919- 1934.
12- Ganji A., Khalili D., and Karamouz M. 2007. Development of stochastic dynamic Nash game model for reservoir operation. I. The symmetric stochastic model with perfect information, Adv Water Resour; 30(3): 528- 542.
13- Ghahraman B., and Sepaskhah A. 2004. Linear and non-linear optimization models for allocation of a limited water supply, Irrigation Drainage; 53(1): 39– 54.
14- Goldberg D. E., Korb B., and Deb K. 1989. Messy genetic algorithms: Motivation, analysis, and first results. Complex systems, 3(5), 493- 530.
15- Haddad O.B., Afshar A., and Marino M.A. 2006. Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization ,Water Resour Manag; 20(5): 661– 680.
16- Juang C. F. 2004. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(2), 997- 1006.
17- Kerachian R., and Karamouz M. 2006. Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach, Water Resour. Res; 42: 1- 17.
18- Kumar D.N., Falguni B., and Srinivasa K.R. 2010. Optimal Reservoir Operation for Flood Control Using Folded Dynamic Programming ,Water Resour Manage; 24(6):1045– 1064.
19- Marino M.A., and Mahammadi B. 1983. Reservoir management: A reliability programming approach, Water Resour Res; 19(3): 613- 620.
20- Martin Q.W. 1987. Optimal daily operation of surface-water systems, Journal Water Res Pl-ASCE; 113 (4): 453- 470.
21- Moghaddam A., Alizadeh A., Ziaei A.N., and Farid A. 2014. The Effect of PSO Algorithm Parameters in Optimal Design of Water Distribution Systems. 8th National Congress on Civil Engineering, Babol, Iran, May 7-8. (in Persian)
22- Mouatasim A. El. 2011. Boolean Integer Nonlinear Programming for Water Multi‐Reservoir Operation, Journal Water Res Pl-ASCE; doi: 10.1061/ (ASCE) WR.1943-5452.0000160.
23- Oliveira R., and Loucks D.P. 1997. Operating rules for multireservoir systems, Water Resour Res; 33(4): 839– 852.
24- Premalatha K., and Natarajan A. M. 2009. Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math, 2(4), 597- 608.
25- Reddy J.M., and Kumar D.N. 2007. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation, Hydrol. Process; 21(21): 2897– 2909.
26- Reddy M., and Kumar D. 2009. Performance evaluation of elitist-mutated multi-objective particle swarm optimization for integrated water resources management. Journal of Hydro informatics, 11(1), 79- 88.
27- Re Velle C., Joeres E., and Kirby W. 1969. The linear decision rule in reservoir management and design: 1, Development of the Stochastic Model, Water Resour Res; 5(4): 767- 777.
28- Sharif M., and Wardlaw R. 2000. Multireservoir systems optimization using genetic algorithms: case study, Journal Comput Civil Eng 2000; 14(4): 255– 263.
29- Shi Y., and Eberhart R., .1998. A modified particle swarm optimizer, in: Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence. pp. 69– 73.
30- Teegavarapu R.S.V., and Simonovic S.P. 2002. Optimal operation of reservoir systems using simulated annealing, Water Resour Manage; 16(5): 401- 428.
31- Tilmanta A., Faouzib E.H., and Vanclooster M. 2002. Optimal operation of multipurpose reservoirs using flexible stochastic dynamic programming, Appl Soft Comput; 2(1): 61- 74.
32- Tu M.Y., Hsu N.S., and Yeh W.W.G. 2003. Optimization of reservoir management and operation with hedging rules, J Water Res Pl-ASCE; 129(2): 86- 97.
33- Van den Bergh F., and Engelbrecht A. P. 2004. A cooperative approach to particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 8(3), 225- 239.