تعداد نشریات | 50 |
تعداد شمارهها | 1,875 |
تعداد مقالات | 19,721 |
تعداد مشاهده مقاله | 12,154,409 |
تعداد دریافت فایل اصل مقاله | 7,662,011 |
اعتبارسنجی مدل های تجربی و نیمه تجربی برآورد تابش خالص روزانه با استفاده از مقادیر اندازه گیری شده در اقلیم سرد و نیمه خشک | ||
آب و خاک | ||
مقاله 8، دوره 30، شماره 6 - شماره پیاپی 50، اسفند 1395، صفحه 2087-2100 اصل مقاله (1.09 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v30i6.30934 | ||
نویسندگان | ||
علی اکبر سبزی پرور* ؛ بهناز ختار | ||
دانشگاه بوعلی سینا همدان | ||
چکیده | ||
مطالعه تابش خالص خورشیدی در بسیاری از زمینه ها از جمله کشاورزی، هواشناسی و آب شناسی دارای اهمیت بسزایی است. تابش خالص خورشیدی یکی از مؤلفه های مهم و تأثیرگذار در شار حرارتی خاک، شدت تبخیر- تعرق و چرخه هیدرولوژیکی می باشد. در این تحقیق سعی شد تابش خالص روزانه با استفاده از 12 مدل تابش خالص، در منطقه سرد و نیمه خشک همدان برآورد و نتایج بدست آمده از هر روش با تابش خالص اندازه گیری شده در ایستگاه کلیماتولوژی دانشگاه بوعلی سینا در طول دوره 92-1390 مقایسه و مدل بهینه تابش خالص همدان معرفی گردد. در پژوهش حاضر مدل های تابش در طول دوره آماری مورد مطالعه به تفکیک در مقیاس فصلی و سالانه مورد بررسی قرار گرفتند. نتایج به دست آمده از مدل های تجربی نشان داد که مدل های بهینه در فصل بهار، تابستان و پائیز مدل رگرسیون مبنا و در فصل زمستان مدل ایرماک می باشد. همچنین در مقیاس سالانه مدل رگرسیون مبنا به عنوان مدل بهینه در اقلیم سرد نیمه خشک همدان- معرفی گردید. در مجموع، مدل های رگرسیون مبنا کمترین مقدار خطا را در بین 12 مدل جهت برآورد تابش خالص روزانه در اقلیم سرد و نیمه خشک همدان به خود اختصاص دادند. | ||
کلیدواژهها | ||
برآورد تابش خالص روزانه؛ مدل های رگرسیون مبنا؛ مقیاس فصلی و سالانه؛ همدان | ||
مراجع | ||
1- Addiscott T. M., and Whitmore A.P. 1987.Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. (Cambr), 109:141-157.
2- Alados I., Foyo-Moreno B., Olmoa F.J., and Alados-Arboledas L. 2003. Relationship between net radiation and solar Radiation for semi-arid shrub-land. Agricultural and Forest Meteorology, 116: 221–227
3- Allen R. G., Pereira L. S., Raes D., and Smith M. 1998. Crop Evapotranspiration: Guidelines for computing crop water requirement". FAO Irrig. and Drain. Rome, 56: 3-12.
4- Almorox J., Benito M., and Hontorio C. 2008. Estimation of global solar radiation in Venezuela Interciencia. Abri. 33: 280-285
5- Asce-Ewri. 2005. The ASCE Standardized Reference Evapotranspiration Equation. Report of the Task Committee on Standardization of Reference Evapotranspiration. Environmental and Water Resources Institute of the American Society of Civil Engineers, Reston, Virginia, USA.
6- Berliand T.A. 1970. Solar radiation and radiation balance data. Hydro. Publish. Hou. Leningrad.
7- Blonquist J., Allen R., and Bugbee B. 2010. An evaluation of the net radiation sub-model in the ASCE standardized reference evapotranspiration equation: Implications for evapotranspiration prediction. Agricultural Water Management, 97: 1026-1038.
8- Carrasco M., and Ortega-Farias S. 2008. Evaluation of a model to simulate net radiation over a vineyard cv. Cabernet Sauvignon. Chilean Journal of Agriculture Research, 68: 156-165.
9- Clothier B.E., Kerr J. P., Talbot J.S., and Scotter D. R. 1982. Measured and estimated evapotranspiration from well-watered crops. New Zealand, J. Agric. Res, 25: 301–307.
10- Fox D. 1981. Judging air quality model performance: a summary of the AMS workshop on dispersion models performance. Bull. Am. Meteorol. Soc, 62: 599-609.
11- Hu H. C., and Lim J. T. 1983. Solar and net radiation in Peninsular Malaysia J. Clim, 3: 271-283.
12- Irmak M., Asce A., Irmak J., Jones W., Howell M., Asce J., Jacobs R. G., Allen M., and Hoogenboom G. 2003. Predicting Daily Net Radiation Using Minimum Climatologically Data. Journal of Irrigation and Drainage Engineering, 131, 4:389-413.
13- Izoimon M. G., Mayer H., and Matzarakis A. 2000. Empirical models for estimating radiative flux: A case study for three mid-Latitude sites with orographic variability. J. Irrig. Drain. Eng. ASCE, 117(5): 758-773.
14- Linacre E. 1992. Climate Data and Resources, a Reference and Guide. RoutledgePress, London, 92–96: 149–185.
15- Mirgaloybayat R. 2011. Evaluation of some selected net solar radiation (Rn) models in FAO Penman Monteith 56 (PMF-56) method for more accurate estimation of daily reference evapotranspiration (ET0), Thesis of Master of Science in Irrigation and Drainage. Bu-Ali Sina University Faculty of Agriculture.
16- Monteith J., and Szeicz G. 1961. The radiation balance of bare soil and vegetation. Quarterly Journal of the Royal Meteorological Society, 87: 159-170
17- Monteith J., and Szeicz G. 1962. Radioactive temperature in the heat balance of natural surface. Quarterly Journal of the Royal Meteorological Society, 88: 496-507.
18- Sabziparvar A. A., Mirgaloybayat R., Marofi S., Zare-Abyaneh H., and Khodamorad Pour M. 2016. Evaluation of some net radiation models for improving daily reference evapotranspiration estimation in Iran. Journal of Irrigation and Drainage Engineering, 040160511-518.
19- Sentelhaz P., and Gillespie T. 2008. Estimating hourly net radiation for leaf wetness duration using the Penman-Monteith equation. Theor. Appl. Climatol, 91: 205–215.
20- Shaw R. H. 1956. A comparison of solar and net radiation. Bull. Am. Met. Soc, 37: 205–206.
21- Soltani S., and Moraid S. 2006. Comparison of solar radiation from Hargeaves-Samani model against ANN method .AgricultureScience, 15:69-77.
22- Wright J. L. 1996. New Evapotranspiration Crop Coefficients. Journal of Irrigation and Drainage Division. ASCE, 108: 57-74. | ||
آمار تعداد مشاهده مقاله: 351 تعداد دریافت فایل اصل مقاله: 416 |