تعداد نشریات | 49 |
تعداد شمارهها | 1,846 |
تعداد مقالات | 19,518 |
تعداد مشاهده مقاله | 9,306,541 |
تعداد دریافت فایل اصل مقاله | 6,540,137 |
کاربرد نظریه آشوب و شبکه عصبی مصنوعی در بررسی و تخمین تبخیر از سطح آب دریاچهها | ||
آب و خاک | ||
مقاله 10، دوره 31، شماره 1 - شماره پیاپی 51، اردیبهشت 1396، صفحه 61-74 اصل مقاله (780.25 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i1.49971 | ||
نویسندگان | ||
سعید فرزین* 1؛ رضا حاجی آبادی2؛ محمد حسین احمدی3 | ||
1دانشگاه سمنان | ||
2دانشگاه علم و صنعت ایران | ||
3دانشگاه تبریز | ||
چکیده | ||
ماهیت دینامیکی پدیدههای هیدرولوژیکی و نیز محدودیت دسترسی ابزارهای ریاضیاتی مناسب، سبب گشته که اکثر مطالعات پیشین در این زمینه، منجر به نگرشی تصادفی و احتمالاتی گردد. بررسی قطعی و یا تصادفی بودن فرآیند دینامیکی مقادیر تبخیر از سطح آب دریاچهها، به منظور انتخاب روش مناسب شبیهسازی و بررسی قابلیت پیشبینی، موضوع مهم و بحث برانگیزی است که در این تحقیق به آن پرداخته شده است. در این راستا، با توجه به قابلیت فراوان نظریه آشوب و مدل هوشمند شبکه عصبی در مطالعه رفتار سیستمهای غیرخطی پویا مقادیر ماهانه تبخیر سطح آب دریاچه ارومیه در شمالغربی ایران، طی یک دوره آماری 40 ساله (1346-1386) با استفاده از مفاهیم این دو روش مورد بررسی و پیشبینی قرار گرفته است. نتایج بررسی شاخصهای تعیین ماهیت آشوبناکی دادههای تبخیر؛ نمای لیاپانوف مثبت و مقدار غیرصحیح شیب نمودار بعد همبستگی در مقابل شعاع همبستگی، همگی نشانگر رفتار کاملا آشوبناک سری زمانی تحت بررسی میباشد. نتایج صحتسنجی حاکی از دقت بالای نظریه آشوب و مدل شبکه عصبی مصنوعی- اندکی دقت بالاتر- میباشد به طوریکه میانگین خطای مطلق (MAE) و جذر میانگین مربعات خطا (RMSE) در شبکه عصبی مصنوعی نسبت به نظریه آشوب به ترتیب 51/2 و 25/2 میلیمتر کاهش یافتهاند. همچنین نتایج مربوط به ارتفاع تجمعی تبخیر در دوره صحتسنجی حاکی از برتری 8/3 درصدی شبکه عصبی مصنوعی نسبت به نظریه آشوب دارد. | ||
کلیدواژهها | ||
پیشبینی؛ پدیدههای هیدرولوژیکی؛ دریاچه ارومیه؛ نمای لیاپانوف | ||
مراجع | ||
1- Abarbanel H. 1996. Analysis of observed chaotic data. Springer, Verlag, New York.
2- Banks J., Dragan V. and Jones A. 2003. Chaos, a mathematical introduction. Cambridge University Press.
3- Cao L. 1997. Practical method for determining the minimum embedding dimension of scalar time series. Physica D: Nonlinear Phenomena, 110:43-50.
4- Damle C., and Yalcin A. 2007. Flood prediction using time series data mining. Journal of Hydrology, 333:305-316.
5- Doung N.H., Nguyen T.H., Snasel V. 2015. A hybrid approach for predicting river runoff. Intelligent Data analysis and Applications, 370:61-71.
6- Elshorbagy A., Simonovic S.P., and Panu U.S. 2002. Estimation of missing stream flow data using principles of chaos theory. Journal of Hydrology, 255:123–133.
7- Frazier C., and Kockelman K. 2004. Chaos theory and transportation systems: An instructive example. Procof 83th Annual Meeting of the Transportation ResearchBoard, Washington D.C., USA.
8- Ghaheri A., Ghorbani M.A., Del Afrooz H., Malekani L. 2012. Evaluation of stream flow using chaos theory. Iran Water Research Journal, 6(10):177-186. (in Persian with English Abstract)
9- Grassberger P., Procaccia I. 1983. Characterization of strange attractors. Physical Review Letters, 50 (14):346-349.
10- Hassanzadeh, E. 2010. Partitioning impacts of climate and hydraulic structures on water level of Urmia lake (Master Thesis). University of Tabriz, Iran. (in Persian with English Abstract)
11- Hassanzadeh Y., Aalami M.T., Farzin S., Sheikholeslami S.R., Hassanzadeh E. 2012. Study of chaotic nature of daily water level fluctuations in Urmia lake. Journal of Civil Engineering and Environment, 42(1):9-20. (in Persian with English Abstract)
12- Hassanzadeh Y., Lotfollahi-Yaghin M.A., Shahverdi S., Farzin S., Farzin N. 2013. De-noising and prediction of time series based on the wavelet algorithm and chaos theory (case study: SPI drought monitoring index of Tabriz city). Iran-Water Resources Research, 8(3):1-13. (in Persian with English Abstract)
13- Hilborn R.C. 2000. Chaos and Nonlinear Dynamics. Oxford University Press.
14- Khatibi R., Ghorbani M.A., Aalami M.T., Kocak K., Makarynskyy O., Makarynska D., and Aalinezhad M. 2011. Dynamics of hourly sea level at Hillarys Boat harbour, Western Australia: a chaos theory perspective. Ocean Dynamics, 61:1797–1807.
15- Khatibi R., Naghipour L., Ghorbani M.A., Aalami M.T. 2013. Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations. Neural Computing and Appliccations, 23(7):2241-2252.
16- Khan S., Ganguly A.R., and Saigal S. 2005. Detection and predictive Modeling of chaos in finite hydrologycal time series. Nonlinear Processes in Geophysics, 12: 41-53.
17-Kim S., Shiri J., Kisi O., Singh V.P. 2013. Estimating daily pan evaporation using different data-driven methods and lag-time pattern. Water Resources Management, 27:2267-2286.
18- Kocak K., Bali A., and Bektasoglu B. 2007. Prediction of monthly flows by using chaotic approach. p. 553-559. International Congress on River Basin Management, 22-24 March, Antalya, Turkey, 4 (117).
19- Ng W., Panu U., Lenoxx W. 2007. Based analytical techniques for daily extreme hydrological observations. International Journal of Hydrology, 342:17-41.
20- Regonda S.K., Sivakumar V., and Jain A. 2004. Temporal scaling in the river flow: Can it be chaotic? Hydrological Sciences Journal, 49(3):373-385.
21- Shang P., Na X., and Kamae S. 2009. Chaotic analysis of time series in the sediment transport phenomenon. Chaos Solitons and Fractals, 41:368–379.
22- Sivakumar B. 2000. Chaos theory in hydrology: important issues and interpretations. Journal of Hydrology, 227: 1-20.
23- Solomatine D.P., Velickov S., and Wust J.C. 2001. Predicting water levels and currents in the north sea using chaos theory and neural networks. p. 1-11. Proceeding of the Congress-International Association for Hydraulic Research, 29th Iahr Congress, Beijing, China.
24- Stehlik J. 1999. Deterministic chaos in runoff series. Journal of Hydrololy and Hydromechanics, 47(4):271–287.
25- Sterman J.D. 2000. Business dynamics. McGraw-Hill, Book Co, Boston.
26-Terzi O. 2013. Daily pan evaporation estimation using gene expression programming and adaptive neural-based fuzzy inference system. Neural Computing and Applications, 23(3):1035-1044.
27- Wu J., Lu J., and Wang J. 2009. Application of chaos and fractal models to water quality time series prediction. Environmental Modeling & Software, 24:632–636.
28- Yu H.H., Jenq N.H. 2002. Handbook of neural network signal processing. CRC Press.
29-Zounemat-Kermani M., Kisi O. 2015. Time series analysis on marine wind-wave characteristics using chaos theory. Ocean Engineering, 100:46-53. | ||
آمار تعداد مشاهده مقاله: 435 تعداد دریافت فایل اصل مقاله: 426 |