تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,493 |
تعداد مشاهده مقاله | 9,277,796 |
تعداد دریافت فایل اصل مقاله | 6,509,791 |
مدلسازی و پیشبینی اکسیژن مورد نیاز بیولوژیکی (BOD) با استفاده از ترکیب ماشین بردار پشتیبان با تبدیل موجک | ||
آب و خاک | ||
مقاله 9، دوره 31، شماره 1 - شماره پیاپی 51، اردیبهشت 1396، صفحه 86-100 اصل مقاله (334.66 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i1.52080 | ||
نویسندگان | ||
اباذر سلگی* 1؛ امیر پورحقی1؛ حیدر زارعی1؛ هادی انصاری2 | ||
1دانشگاه شهید چمران اهواز | ||
2دانشگاه بوعلی سینا همدان | ||
چکیده | ||
آلودگی های شیمیایی آب های سطحی یکی از موضوعات جدی است که کیفیت این گونه آبها را تهدید می کند. این مطلب برای آب هایی که به طور مستقیم به مصارف زندگی بشر می رسند اهمیتی چند برابر بخشیده است. یکی از پارامترهایی مهمی که برای سنجش آلودگی آب استفاده می-شود شاخصBOD می باشد. در این مطالعه، توانایی مدل ماشین بردار پشتیبان (SVM) به منظور مدل سازی و پیش بینی اکسیژن مورد نیاز بیولوژیکی (BOD) در رودخانه کارون واقع در غرب کشور ایران مورد ارزیابی قرار گرفت. به منظوربررسی مدل ها به صورت ترکیبی، از تبدیل موجک استفاده شد. بعد از تجزیه پارامترها با تبدیل موجک، با استفاده از روش تجزیه به مولفه های اصلی (PCA) مولفه های مهم تعیین شدند. سپس از این مولفه های مهم به عنوان ورودی به مدل ماشین بردار پشتیبان استفاده شد تا مدل ترکیبی ماشین بردار پشتیبان-موجک (WSVM) حاصل گردید. جهت انجام این تحقیق از سری زمانی ماهانه BODرودخانه کارون در ایستگاه ملاثانی و متغیرهای کمکی اکسیژن محلول (DO)، جریان رودخانه و دمای ماهانه در یک دوره 13ساله (1393-1381) استفاده شد. نتایج بدست آمده حاکی از آن بود که مدل SVM دارای ضریب تبیین 84/0 و جذر میانگین مربعات خطای 0338/0(میلی گرم بر لیتر) می باشد و اعمال تبدیل موجک روی دادههای ورودی مدل باعث بهبود نتایج تا ضریب تبیین94/0 و جذر میانگین مربعات خطای0210/0(میلی گرم بر لیتر) شد. بنابراین ترکیب ماشین بردار پشتیبان با تبدیل موجک یک ایده جدید برای پیش بینی مقدار BOD رودخانه کارون می باشد. در پایان مقدار BOD برای یک دوره شش ماهه با استفاده از مدل WSVMپیش بینی شد. | ||
کلیدواژهها | ||
پیش بینی BOD؛ PCA؛ مدل ترکیبی؛ رودخانه کارون | ||
مراجع | ||
1. Streeter H.W., Phelps E.B. 1925. A study of the pollution and natural purification of the Ohio River, III.Factors concerned in the phenomen a of oxidation andreaeration. Bulletin 146 Public Health Service,Washington,DC,USA.
2. Liu l., Deng L., Yong D., Dong S. 2011. Native biofilm cultured under controllable condition and used in mediated method for BOD measurement. Talanta,84:895-9.
3. Kunwar P., Singh A., Amrita M., Gunja J. 2009. Artificial neural network modeling of the river water quality-A case study. Ecol Model, 220(8):88-95.
4. Xiang S.L., Liu Z.M., Ma L.P. 2006. Study of multivariate linear regression analysis model for ground water quality prediction. Guizhou Science, 24:60-2.
5. Wu H.J., Lin Z.Y., Guo S.L. 2000. The application of artificial neural networks in the resources and environment. Resour Environ Yangtze Basin, 9:237-41.
6. Kisi O. 2008. Stream flow forecasting using neuro-wavelet technique. Hydrological Processes, 22: 4142–52.
7. Nourani V., Kisi Ö., Komasi M. 2011. Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology, 402:41–59.
8. Nourani V., Komasi M., Mano A. 2009. A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling. Water Resource Management, 23:2877–94.
9. Alizadeh M.J., Kavianpour M.R. 2015. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Marine Pollution Bulletin, 98(1–2):171-8.
10. Solgi A., Nourani V., Pourhaghi A. 2014. Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neuro Fuzzy Inference System (Case Study: Verayneh Station, Nahavand). Advances in Civil Engineering,1-12.
11. Christos S.A., John N.E.P., Vassilios A.T. 2008. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal,143(1–3):96-110.
12. Najah A., Elshafie A., Karim O., Jaffar O. 2009. Prediction of Johor river water quality parameters using artificial neural networks. European Journal of Scientific Research, 28(4):22-35.
13. Asadollahfardi G., Taklify A., and Ghanbari A. 2012. Application of Artificial Neural Network to Predict TDS in Talkheh Rud River. Journal of Irrigation and Drainage Engineering(ASCE),138(20):363-370.
14. Wen X., Fang J., Diao M., Zhang C. 2013. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environmental monitoring and assessment, 185(5):4361-71.
15. Parmar K.S., Bhardwaj R. 2013. Wavelet and statistical analysis of river water quality parameters. Applied Mathematics and Computation, 219:10172-82.
16. Jouanneau S., Recoules L., Durand M.J., Boukabache A, .Picot V., Primault Y.2014. Methods for assessing biochemical oxygen demand (BOD): A review. Water Research, 49:62-82.
17. Najah A., Shafie A.E., Kari O.A., Amr H., Shafie E. 2014. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring. Environmental Science and Pollution Research, 21(3):1658-70.
18. Ahmed A.A.M., Shah S.M.A. 2015. Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University - Engineering Sciences.
19. Deng W., Wang G., Zhang X. 2015. A novel hybrid waterquality time series prediction method based on cloud model and fuzzy forecasting. Chemometrics and Intelligent Laboratory Systems, 149(Part A):39-49.
20. Olyaie E., Banejad H., Samadi M.T, Rahmani A.R, and Saghi M.H. 2010. Performance Evaluation of Artificial Neural Networks for Predicting Rivers Water Quality Indices (BOD and DO) in Hamadan Morad Beik River. water and soil science, 20.1(3):200-210(in Persian with English abstract).
21. Parmar K.S., Bhardwaj R. 2012. Analysis of Water Parameters Using Daubechies Wavelet (Level 5) (Db5). American Journal of Mathematics and Statistics, 2(3):57-63.
22. Riad S., Mania J., Bouchaou L., Najjar Y. 2004. Rainfall-runoff model usingan artificial neural network approach. Mathematical and Computer Modelling, 40(7–8):839-46.
23. Solgi A. 2014. Stream flow forecasting using combined Neural Network Wavelet model and comparsion with Adaptive Neuro Fuzzy Inference System and Artificial Neural Network methods(Case Study:GamasyabRiver,Nahavand). MSc.ShahidChamran University of Ahvaz,Iran(in Persian with English abstract).
24. Cortes C., Vapnik V. 1995.Support-VectorNetworks. Machine Learning, 20:273-95.
25. Sujay Raghavendra N., Paresh Chandra D. 2014. Support vector machine applications in the field of hydrology: A review. Applied Soft Computing,19(0):372-86.
26. Schölkopf, B., A. Smola and K.R. Müller. 2005. Kernel principal component analysis. Lecture Notes in Computer Science. 1327: 583-588.
27. Schölkopf, B. and A.J.Smola. 2002. Learning with Kernels. MIT Press, Cambridge, MA.
28. Grossmann A., Morlet J. 1984. Decomposition of hardy function into square integrable wavelets ofconstant shape. SIMA Journal on Mathematical Analysis (SIMA), 5:723-36.
29. Mallat S.G. 1998. A wavelet tour of signal processing. 2, editor: San Diego. 557 p.
30. Fofola-Georgiou E., Kumar P. 1995. Wavelet in geophysiscs.New York: Academic Press.
31. Hutcheson G., and Nick S.1999. The multivariate social scientist: Introductory statistics using generalized linear models. Thousand Oaks, CA,Sage Publications. | ||
آمار تعداد مشاهده مقاله: 410 تعداد دریافت فایل اصل مقاله: 265 |