1- Alloway B.J. 1995. Heavy metal in soils. Blackie Academic and Professional, London, UK, pp 25–34.
2- Gimeno-Garcia E., Andreu V., and Boluda R. 1996. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soil. Environmental Pollution, 92: 19-25.
3- Brown P.H., Welch R.M., and Cary E.E. 1987. Nickel: a micronutrient essential for higher plants. Plant Physiology, 85: 801–803.
4- Seregin I.V., and Kozhevnikova A.D. 2006. Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53: 257–277.
5- Swamy PM, and B. N. Smith. 1999. Role of abscisic acid in plant stress tolerance. Current Science, 9: 1220–1227.
6- Cabello-Conejo M., Centofanti T., Kidd P., Prieto-Fernandez Á., and Chaney R. 2013. Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species. International Journal of Phytoremediation, 15: 365–75.
7- Cassina L., Tassi E., Morelli E., and Giorgetti L. 2011. Exogenous cytokinin treatments of a Ni hyperaccumulator, Alyssm murale, grown in a serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 13: 90-101.
8- Fassler E., Evangelou M.W., Robinson B. H., and Schulin R. 2010. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere, 80: 901–907.
9- Lao C., Zeledon Z., Gamisans X., and Sole M. 2005. Sorption of Cd (II) and Pb(II) from aqueous solutions by a low-rank coal (leonardite). Separation Purification Technology, 45: 79-85.
10- Tan K.H. 2003. Humic matter in soil and the environment. Marcel Dekker, New York.
11- Khan S., Cao Q., Chen B.D., and Zhu Y.G. 2006. Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked, contaminated soil. Journal of Soils and Sediments, 6: 236-242.
12- Turan M., and Angin I. 2004. Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. J. Acta Agric. Scandinavica Section b, Soil and Plant Science, 54: 221-231.
13-Wang Q., Li Z., Cheng S., and Wu Z. 2010. Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere, 78: 604-608.
14- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soil. Journal of Agronomy, 54: 464-465.
15- Sumner M.E., and Miller W.P. 1996. Cation exchange capacity and exchange coefficients. P. 1201-1229. In D. L. Sparks et al. (ed.). Methods of soil analysis, part 3, 3rd ed., Am. Soc. Agron., Madison, WI.
16- Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon and organic matter. P. 961-1010. In D. L. Sparks et al. (ed.) Methods of soil analysis, part 3, 3rd ed., Am. Soc. Agron., Madison, WI.
17- Olsen S.R.C., Cole V., Watanabe F.S., and Dean L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U. S. Gov. Print. Office, Washington, D.C.
18- Bremner J.M. 1996. Nitrogen-total. P.1085-1121. Methods of soil analysis. In D. L. Sparks et al. (ed.) Methods of soil analysis, part 3, 3rd ed., Am. Soc. Agron., Madison, WI.
19- Knudsen D., Peterson G.A., and Pratt P.F. 1982. Lithium, sodium, and potassium. P. 225-246. In A. L. Page, R. H. Miller, and D. R. Keeney (eds.). Methods of soil analysis, part 3. Chemical and microbiological properties. Am. Soc. Agron., Madison, WI.
20- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
21- Audet, P., and C. Charest. 2007.Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 147: 609-614.
22- Wang F.Y., Linb X.G., and Yinb R. 2007. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 51: 99-109.
23- Yoon J., Cao X., Zhou Q., and Ma L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of Total Environment, 368: 456-464.
24- Hadi F., Bano A., and Fuller M.P. 2010. The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere, 80: 457–62.
25- Tanimoto E. 2005. Regulation of root growth by plant hormones—roles for auxin and gibberellin. Critical Reviews in Plant Sciences, 24:249–65.
26- JandaT., Horvath E., Szalai G., and Paldi E. 2007. Role of salicylic acid in the induction of abiotic stress tolerance. In S. Hayat and A. Ahmad (eds.), Salicylic Acid – a plant hormone. Springer.
27- Baker A.J.M., Megrath S.P., Sidholi C.M.D., and Reeves R.D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops and metal-accumulating plants. Conservation and Recycling, 11: 41-49.
28- Sengar R., Gautam M., Sengar R., Sengar R., Garg S., Sengar K., and Chaudhary R. 2008. Lead Stress
Effects on Physiobiochemical Activities of Higher Plants. Reviews of Environmental Contamination and Toxicology Vol. 196. D. M. Whitacre, Springer US. 196: 73-93.
29- Prasad M.N.V., and Freitas H. 2003. Metal hyper accumulation in plants-Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6: 275-321
30- Maksymiec W., and Krupa Z. 2006. The effects of shortterm exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ. Journal of Experimental Botany, 57: 187-194.
31- Khan, A. S., and N. Y.Chaudhry. 2006. GA3 improves flower yield in some cucurbits treated with lead and mercury. African Journal of Biotechnology, 5: 149-153.
32- Gunes A., Inal A., Alpaslan M., Cicek N., Guneri E., Eraslan F., and Guzelordu T. 2005. Effects of exogenously applied salicylic acid on the induction of multiple stress toler-ance and mineral nutrition in maize (Zea mays L.), Archives of Agronomy and Soil Science, 51: 687–695.
33- Aftab T., Khan M.M.A., Idrees M., Naeem M., and Moinuddin. 2010. Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J. Crop Science and Biotechnology, 13: 183–188.
34- Mostofa M.. G., and Fujita M. 2013. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22 : 959 - 973.
35- Raskin I., and Ensley B.D. 2000. Phytoremediation of Toxic Metals: Using plants to clean up the environment. John Wiley & Sons, Inc., New York.
36- Aggarwal H., and Goyal D. 2007. Phytoremediation of some heavy metals by agronomic crops. Developments in Environmental Science, 5: 79–98.