1. Ashraf S.H., Ashraf V., and Abbaspour H. 2011. Assessment of land production potential for barley using geographic information system (GIS) method. Indian Journal of Science and Technology, 4(12):1775-1777.
2. Andonie R. 2010. Extreme Data Mining: Inference from small data sets. International Journal of Computes Communications and Control, 5(3): 280-291.
3. Allen R.G., Pereira, L.S Raes D., and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9):D05109.
4. Ayoubi SH.A Givi J., Jalalian A., and Amini., A.M. 2002. Quantitative land suitability evaluation in north Baron Region (esfahan province) for wheat, barley, maize and rice, Journal of Agricultural and Natural resource research and Technology, 3(6): 105-118. (In Persian).
5. Ayoubi SH.A., and Jalalian A. 2010 .Land Evaluation (Agricultural and Natural Resources Secend Edition), Isfahan University of Technology Publication Center, Isfahan, Iran, 385p. (In Persian).
6. Azadeh A., Saberi M., Gitiforouz Z., and Saberi Z. 2009. A Hybrid simulation adaptive network based fuzzy inference system for improvement of electricity consumption estimation. Expert System Applied Journal, 36(8): 11108-11117.
7. Bremner J.M. 1965. Inorganic forms of nitrogen. In: Black (Ed.), Methods of soil analysis. Part 2, Monograph NO, 9: 1179-1232. Am. Soc. Agron., Madison, WI.
8. De la Rosa D., Moreno JA., Garcia LV., and Almorza, J. 1992. Microleis: A microcomputer-based Mediterranean land evaluation information system. Soil Use and Management 8: 89-96.
9. Demuth H., and Beale, M. 2000. Neural Network Toolbox Users Guideline. By The Math Works, Inc, Version 4, 840pp.
10. Dep K., and Beyer G. 2001. Self-adaptive Genetic Algorithms with Simulated Binary Cross over. Evolution Computer Journal, 9:197-221.
11. Eftekhar Ardebili, M. 2004. Artificial Neural Network Modelling. MSc Thesis of AL Zahra university of Tehran, Tehran.
12. Etedali1 S., Givi J., and Nouri M.R. 2012. Comparison Between Land Production Potential Prediction for Maize, Using FAO and Wageningen Models and Assessment of Management Level for Its Cultivation Around Shahrekord City. Journal of Water and soil, 26 (4): 873-855. (in Persian).
13. Gee G. W., and Bauder J. W. 1986. Particle size analysis. p. 383-411. In: A. Klute (Ed), Methods of soil analysis. Part I. Physical and mineralogical methods, 2nd ed., Agronomy Monograph. No: 9. ASA and SSSA. Madison, WI.
14. Halder J.C. 2013. Land suitability assessment for crop cultivation by using remote sensing and GIS. Journal of Geography and Geology, 5(3): 65-78.
15. Jalalian A., Rostaminia M., Ayoubi SH.A., and Amini Am. Qualitative, Quantitative and economic land suitability evaluation for wheat, maize and sesame in Mehran plain. Journal of Agricultural and Natural resource research and Technology, 4(3): 393-403. )In Persian).
16. Kim S., and Kim S.H. 2008. Neural Networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351: 299-317.
17. Koza J.R. 2008. htpp://www.genetic-programming.com,The home page of john R. Koza at Genetic Programming Lnc.
18. Liu J., and Goering C.E. 1999. Neural network for setting target corn yields. ASAE paper 99-3040, Toronto, Ontario,Canada, July 18-21.
19. Manhaj, M.B. 2005. Fundamental of Artificial Neural Network. Amir kabir University of Technology Center, 712p.
20. McLean E.O. 1982. Soil pH and Lime requirement. Pp. 199-224. In: Page AL, Miller RH and Keeney DR (eds). Methods of Soil Analysis. Part 2. Chemical and Micromorphological Properties. 2nd ed. Agron, Monogr. 9. ASA and SSSA, Madison, WI.
21. Mohammadi J. 2006. Pedometrics: Classical Statistics. Pelk publication. (in Persian).
22. Mohammadi J. 2006. Pedometrics: Fuzzy Systems Theory. Pelk publication. (in Persian).
23. Nelson R.E. 1982. Carbonate and gypsum. Pp. 181-197. In: Page AL, Miller RH and Keeney DR (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
24. Nelson R.E., and Sommers L. 1982. Total carbon, organic carbon and organic matter. Pp. 532-581. In: Page AL, Miller RH and Keeney DR (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Methodes. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
25. Newhall F., and Berdanier C.R. 1996. Calculation of soil moisture regimes from the climatic record. Natural Resources Conversations Service, Soil Survey Investigation. Report No. 46, 13p.
26. Norouzi M., Ayoubi SH.A., Jalalian A., Khademi H. and Dehghani, A. 2010. Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 60(4): 341-352.
27. Olsen S.R., Cole C.V., Watanable, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U. S. Government. Print. Office, Washington, DC.
28. Sayegh A.H., Khan P., and Ryan, J. 1978. Factors affecting gypsum and cation exchange capacity determination in gypsiferous soils. Soil Science Journal, 125: 294-300.
29.Schoeneberger P.J., Wysocki D.A., Benham E.C. and Broderson, W.D. 2006. Field Book
for Describing and Sampling Soils. Natural Resources Conservation Service, USDA,National Soil Survey Center, Lincoln, NE, 280p
30. Servati M, Jafarzadeh, A.A., Ghorbani M.A., Shahbazi F. and Davatgar N. 2014. Comparison of the FAO and Albero Models, in Prediction of Irigated Wheat Production Potentials in the Khajeh region.Water and Soil Science Journal, 24: 1-14. (in Persian).
31. Sette S., and Boullart L. 2001. Genetic programming: principles and applications. Engineering Applications of Artificial Intelligence, 14: 727–736.
32. Shite N, Khaje. Geological survey and Mineral Exploration of Iran. 2006. Geology Map of Iran, 1:100000series.
33. Sohrabi vafa H. 2012. Forecasting of energy demand in Iran by soft computation technic. Msc thesis of shahid abbaspour energy and water Industry university.
34. Soil Survey Field and Labra Methods Manuals. 2014. Soil Survey Investigations Report No.51.Version.2. Issued 2014.
35. Sudduth K.A., Drummond S.T., Birrell S.J., and Kitchen, N.R. 1996. Analysis of spatial factors influencing crop yield, in Proc. 3rd Int. Conf. On Precision Agriculture, P.C. Robert et al. (ed.), pp. 129-140.
36. Sys C., Van Ranset E., and Debaveye J. 1991a. Land Evaluation, Part I, Principle in Land Evaluation and Crop Production Calculation, International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent., Belgium.
37. Sys C., Van Ranset E., and Debaveye J. 1991b. Land Evaluation, Part II, Methods in Land Evaluation. International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent, Belgium.
38. Taghizadeh Mehrjerdi R., Seyedjalali S.A., and Sarmadian F. 2016. Prediction of Corn Spatial yield by soil digital mapping in Gotend region (Khuzestan Province, IRAN). Jornal of plant production, 19 (4): 70-96.
39. Yang Y., and Cai Y. 2000. Sustainable evaluation on rural resources, environment and development of China – the SEEA method and its applications. Acta Geographica Sinica, 55 (5): 596–606.