1. Akbari S. 2014. Soil formation, pedologic processes and nickel and chromium distribution in soil mineral particles along a Catena over Ultra basic parent material, West of Mashhad. Ms. Thesis. Faculty of soil science. Mashhad. Iran. (in Persian)
2. Alavi Tehrani N. 1977. Geology and petrography in the ophiolite range n.w. of Sabzevar (Khorassan/Iran): With special regard to metamorphism and genetic relations in an ophiolite suite (Report / Geological Survey of Iran). Geological Survey of Iran.Tehran. 156 pp.
3. Alloway B. 2013. Heavy metals in soils. Trace metals and metalloids in soil and their bioavailability. Springer, NY. 614 pp.
4. Bibi Noorarlijannah A.M., Lin C.Y., Cleophas F., Mohd Harun A., and Musta B. 2015. Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring and Assessment, 187: 1-11.
5. Çevik F., Göksu M.Z.L., Derici O.B., and Fındık Ö. 2009. An assessment of metal pollution in surface sediments of Seyhan dam byusing enrichment factor. geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152: 309-317.
6. Davari A., Danehkar A., Khorasani N., and Javanshir A. 2012. Identification of Heavy Metals Contamination at Bushehr Mangroves. Journal of Environmental Science. 3: 27-36. (in Persian with English abstract)
7. Davoudi Z., Rahgoshay M., and Monsef A. 2012. Petrology of gabbroic dikes mantle ophiolite sequence Neyriz. Proceeding of the 31st meeting of Earth Sciences. 2nd and 3rd of December. Tehran. Geological Survey of Iran. (in Persian)
8. Dayani M., and Mohammadi J. 2010. Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere, 20: 568-577.
9. Department of environment. 2014. Soil resource quality standards. Department of human environment (soil and water office). 166pp.
10. Fars statistical year book. 2007. Fars management and planning Organization. Office of the president management and planning organization. (in Persian)
11. Gandois L., Probst A., and Dumat C. 2010. Modelling trace metal extractability and solubility in French forest soils by using soil properties. European Journal of Soil Science, 61: 271-286.
12. Gong M., Wu L., Bi X.Y., Ren L.M., Wang L., Ma Z.D., Bi Z.D., and Li Z.G. 2010. Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32: 59-72.
13. Gonnelli C., and Renella G. 2013. Chromium and nickel. p 313-333. In B.J. Alloway (ed). Heavy metals in soils: Trace metals and metalloids in soil and their bioavailability. 3rd ed. Springer, NY.
14. Hassanshahi H., and Dastoor J. 1995. Reconnaissance soil survey of Neyriz basin (Fars Province). Soil and Water Research Institute. No. 1033 on technical issues. (in Persian)
15. Hernandez L., Probst A., Probst J.L., and Ulrich E. 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of the Total Environment, 312 (1): 195-219.
16. Hooda P.S. 2010. Trace elements in soils. Wiley Online Library. 616 pp.
17. Kaushik A., Kansal A., Kumari S., and Kaushik C. 2009. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164: 265-270.
18. Kelepertzis E. 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221: 82-90.
19. Khaledi Z., and Mohammadzadeh H . 2012. Evaluation of Cr in ophiolite and groundwater and its potential to contaminate the environment in SE of Birjand. Journal Of Economic Geology, 4: 335-350.
20. Khosro Tehrani Kh. 1998. Geology of Iran. Payam Noor University Press. Iran. (in Persian)
21. Li Z., Feng X. Bi X., Li G., Lin Y., and Sun G. 2014. Probing the distribution andcontamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China. Environmental Science and Pollution Research, 21: 4149-4162.
22. Ljung K., Selinus O., Otabbong E., and Berglund M. 2006. Metal and arsenic distribution in soilparticle sizes relevant to soil ingestion by children. Applied Geochemistry, 21: 1613-1624.
23. Loska K., Cebula J., Pelczar J., Wiechuła D., and Kwapuliński J. 1997. Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution, 93: 347-365.
24. Maleki A., Amini H., Nazmara S., Zandi S., and Mahvi A.H. 2014. Spatial distribution of heavy metals in soil, water, and vegetablesof farms in Sanandaj, Kurdistan, Iran. Journal of Environmental Health Science and Engineering, 29:136-146.
25. Namaghi H.H., Karami G.H., and Saadat S. 2011. A study on chemical properties of groundwater and soil in ophiolitic rocks in Firuzabad, east of Shahrood, Iran: with emphasis to heavy metal contamination. Environmental monitoring and assessment, 174: 573-583.
26. Nelson R. 1982. Carbonate and gypsum. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 181-197.
27. Paul D., Choudhary B., Gupta T., and Jose M.T. 2015. Spatial distribution and the extent of heavy metal and hexavalent chromium pollution in agricultural soils from Jajmau, India. Environmental Earth Sciences, 73: 3565-3577.
28. Reimann C., and de Caritat P. 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337: 91-107.
29. Shafiee N., Shirani H., and Sfandiarpour I. 2013. Enrichment of arsenic and selenium in the soils around Sarcheshmeh copper mine. Soil Management Journal, 2:1-11. (in Persian with English abstract)
30. Smolders A.J.P., Lock R.A.C., Van der Velde G., Medina Hoyos R.I., and Roelofs J.G.M. 2003. Effectsof Mining Activities on Heavy Metal Concentrations in Water, Sediment, and Macroinvertebrates in Different Reaches of the Pilcomayo River, South America. Archives of Environmental Contamination and Toxicology, 44: 0314-0323.
31. Soil Survey Staff. 2014. Keys to Soil Taxonomy (12th ed.). NRCS, USDA, USA.
32. Sonmez S., Buyuktas D., Okturen F., and Citak S. 2008. Assessment of different soil to water ratios (1: 1, 1: 2.5, 1: 5) in soil salinity studies. Geoderma, 144: 361-369.
33. Sposito G., Lund L., and Chang A. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46: 260-264.
34. Sutherland R. 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39: 611-627.
35. Swan A.R., and Sandilands M. 1995. Introduction to geological data analysis, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, pp. 387A.
36. Tangestani M.H., Jaffari L., Vincent R.K., and Sridhar B.B.M. 2011. Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: A case study from Neyriz ophiolite, SW Iran. Remote Sensing of Environment, 115: 2243–2254
37. Toomanian N., Jalalian A., and Eghbal M.K. 2001. Genesis of gypsum enriched soils in north-west Isfahan, Iran. Geoderma, 99: 199-224.
38. Villarroel L., Miller J., Lechler P., and Germanoski D. 2006. Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia. Environmental Geology, 51: 283-299.
39. Yalcin M.G., Battaloglu R., and Ilhan S. 2007. Heavy metal sources in Sultan Marsh and its neighborhood, Kayseri, Turkey. Environmental Geology, 53: 399-415.
40. Zhang J., and Liu C. 2002. Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54: 1051-1070.
41. Zhu Y.G., Williams P.N., and Meharg A.A. 2008. Exposure to inorganic arsenic from rice: a global health issue? Environmental Pollution, 154: 169-171.