تعداد نشریات | 49 |
تعداد شمارهها | 1,778 |
تعداد مقالات | 18,930 |
تعداد مشاهده مقاله | 7,814,776 |
تعداد دریافت فایل اصل مقاله | 5,125,833 |
تأثیر نوع و مقدار بیوچار بر برخی ویژگیهای خاک و قابلیت استفاده بعضی عناصر غذایی در یک خاک آهکی | ||
آب و خاک | ||
مقاله 1، دوره 31، شماره 4 - شماره پیاپی 54، آبان 1396، صفحه 1232-1246 اصل مقاله (948.93 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i4.61298 | ||
نویسندگان | ||
ندا مرادی1؛ میرحسن رسولی صدقیانی2؛ ابراهیم سپهر* 2 | ||
1دانشگاه ارومیه | ||
2ارومیه | ||
چکیده | ||
تجزیه حرارتی ضایعات گیاهی و تبدیل آن به بیوچار و افزودن به خاک علاوه بر ترسیب کربن و کاهش آلودگی هوا میتواند سبب اصلاح برخی ویژگیهای خاکهایآهکیشود. به منظور بررسی تأثیر بیوچار بر برخی ویژگیهای خاک آهکی،آزمایشیبهصورت فاکتوریل در قالب طرح کاملاًتصادفی اجرا گردید. فاکتورهای آزمایش شامل نوع بیوچار (ضایعات هرس سیب، هرس انگور و کاه و کلش گندم) و مقدار بیوچار (صفر (B0)، 1 (B1)، 2 (B2)، 4 (B4) و 8 (B8) درصد وزنی/وزنی) بودند.نمونههابهمدت 60روزدردمای 25 درجه سانتیگراد و 60 درصد رطوبت ظرفیت زراعینگهداریشدهوسپسویژگی-هایخاکشامل pH، قابلیتهدایتالکتریکی (EC)،مقدارکربنآلی،نیتروژن معدنی،پتاسیم، فسفر،آهن،منگنز،رویومسقابلاستفادهخاکدرآنهااندازه-گیریگردید.نتایجنشانداد،بهطور کلی با افزایش مقدار بیوچار ، کربن آلی خاک،و همچنین شکلهای قابل استفاده پتاسیم ، فسفر ومنگنز بهطور معنیدار افزایش یافت.درصد کربن آلی خاک در تیمار B8 ضایعات هرس سیب، هرس انگور و کاه و کلش گندم در مقایسه با شاهد به ترتیب 78/3، 80/3 و 24/5 برابر افزایش نشان داد.همچنین شکلهاینیتروژن نیتراتی و آمونیومی در هر سه بیوچار با افزایش مقدار کاهش یافتند. بیوچارحاصل ازکاه و کلش گندمسببکاهشمعنیدار pH و آهن قابل استفادهخاک و افزایش قابلیت هدایت الکتریکیخاکگردید. بهطور کلی بیوچار حاصل از کاه و کلش گندم بیشترین تأثیر را بر خصوصیات خاک و قابلیت استفاده عناصر غذایی داشت. | ||
کلیدواژهها | ||
پتاسیم؛ تجزیه حرارتی؛ ضایعات هرس؛ کاه و کلش گندم؛ کربن آلی | ||
مراجع | ||
1. Allison L.E., and Moodie C.D. 1965. Carbonates. p. 1379-1396. In C.A. Black (ed.) Methods of Soil Analysis. Pares, ASA, Madison, WI.
2. ASTM International. 2013. ASTM D1762-84 (2013) Standard test method for chemical analysis of wood charcoal, http://www.astm.org/Standards/D1762.htm (accessed April 2014).
3. Atkinson C.J., Fitzgerald J.D., and Hipps N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337: 1-18.
4. Chan K.Y.,Van Zwieten L., Meszaros I., Downie A., and Joseph S. 2008. Using poultry litter biochars as soil amendments. Aust J Soil Res, 46:437–444.
5. Chan K.Y., Dorahy C., and Tyler S. 2007. Determining the agronomic value of composts produced from green waste from metropolitan areas of New South Wales, Australia. Australian Journal of Experimental Agriculture, 47: 1377–1382. doi: 10.1071/EA06128.
6. Chapman H.D. 1965. Cation Exchange Capability. In C.A. lack et al. (ed). Methods of Soil Analysis. Soil Science Society of America Journal 891- 901.
7. Cheng W, Coleman DC, Carroll CR and Hoffman CA, 1993. In situ measurements of root respiration and soluble carbon concentrations in the rhizosphere. Soil Biology and Biochemistry25: 1189-1196.
8. Cheng C.H., Lehmann J., and Engelhard M.H. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimi. Cosmochim. Acta, 72: 1598–1610
9. Cheng C.H., Lehmann J., Thies J.E., Burton S.D., and Engelhard M.H. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37: 1477–1488.
10. Chintala R., Mollinedo J., Schumacher T.E., Malo D.D., Julson J.L. 2014a. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60: 393–404.
11. DeLuca T.H., and Aplet G.H. 2007. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Frontiers in Ecology and the Environment, 6: 1-7.
12. Fellet G., Marchiol L., Delle Vedove G., and Peressotti A. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83: 1262–1267.
13. Ge GH and Bauder JW, 1986. Particle size analysis. p. 383-411. In A. Klute (ed.) Methods of Soil Analysis. Physical Properties. Soil Science Society of America, Madison, WI.
14. Glaser B., Lehmann J., and Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soils, 35:219–230.
15. Haefele S.M., Konboon Y., Wongboon W., Amarante S., Maarifat A.A., Pfeiffer E.M., et al. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3):430-40.
16. Hesse P.R. 1971. A textbook of soil chemistry analysis. John Murray Pub. Ltd. London.
17. Jones B.E.H., Haynes R.J., and Phillips I.R. 2010. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. Journal of Environmental Management, 91: 2281–2288.
18. Kim K.R., Kim J.G., Park J.S., Kim M.S., Owens G., Youn G.H., and Lee J.S. 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. Journal of Environmental Management, 102:88–95.
19. Laird D., Fleming P., Wang B., Horton R., and Karlen D. 2010b. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158 (3–4): 436–442.
20. Lehmann J., and Rondon M. 2006. Bio-char soil management on highly weathered soils in the humid tropics. Biological Approaches to Sustainable Soil Systems, 517-530.
21. Lehmann J., da Silva J.P., Steiner C., Nehls T., Zech W., and Glaser B. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil, 249: 343–357.
22. Lehmann J. 2007. Bio-energy in the black. Frontiers in Ecology and Environment. 5:38–387.
23. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizao F.J., Petersen J., and Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70:1719–1730.
24. Lindsay W.L., and Norwell W.A.1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Journal of Soil Science Society of America, 42:421-328.
25. Major J., Steiner C., Downie A., and Lehmann J. 2009. Biochar effects on nutrient leaching. In C.J. Lehmann and S. Joseph (Ed.) Biochar for environmental management: science and technology. Earthscan.
26. Major J., Rondon M., Molina D., Riha S., and Lehmann J. 2010. Maize yield and nutrition during 4 years after biochar applicationto a Colombian savanna Oxisol. Plant Soil, 333: 117-128.
27. Mendez A., Gomez A., Paz-Ferreiro J., and Gasco G. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89(11): 1354-1359.
28. Nelson N.O., Agudelo S.C., Yuan W., and Gan J. 2011. Nitrogen and Phosphorus Availability in Biochar-Amended Soils. Soil Science. 176: 218-226 210.1097/SS.1090b1013e3182171eac.
29. Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. In A.L. Page et al. (ed.) Methods of Soil Analysis, Part 2, 2nd ed. American Society of Agronomy, Inc. Madison, WI.
30. Novak J.M., Lima I., Xing B., Gaskin J.W., Steiner C., Das K., et al. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science. 3:195-206.
31. Pattiya A. 2011. Thermo chemical characterization of agricultural wastes from Thai cassava plantations. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33: 691-701.
32. Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., and Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48: 271–284.
33. Robertson G., and Groffman P. 2007. Nitrogen transformations. p. 341–364. In E.A. Paul and F.E. Clark (ed.) Soil Microbiology and Biochemistry. Springer, New York.
34. Sohi S.P., Krull E., Lopez-Capel E., and Bol R. 2010. A review of biochar and its use and function in soil. P. 47-82. In Advances in Agronomy. Publisher Elsevier Academic Press Inc., ISSN 0065-2213, San Diego, CA-92101-4495, USA.
35. Solomon D., Lehmann J., Thies J., Schafer T., Liang B., Kinyangi J., Neves E., Petersen J., Luizo F., and Skjemstad J. 2007. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian dark earths. Geochimica et cosmochimica Acta, 71: 2285-2298.
36. Steiner C., TeixeiraW.G., Lehmann J., Nehls T., de Macedo J.L.V., Blum W.E.H., and Zech W. 2007. Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275-290.
37. Sukiran M.A., Kheang L.S., Bakar N.A., and May C.Y. 2011. Production and characterization of bio-char from the pyrolysis of empty fruit bunches. American Journal of Applied Sciences, 8: 984–988.
38. Thies J., and Rillig M. 2009. Characteristics of Biochar: Biological Properties. p. 85-106. In J. Lehmann and S. Joseph (ed.) Biochar for Environmental Management: Science and Technology. Earth scan: London, UK.
39. Tyron E.H. 1948. Effect of charcoal on certain physical, chemical, and biological properties of forest soils.Ecological Monographs, 18: 82-115.
40. Uchimiya M., Klasson K.T., Wartelle L.H., and Lima I.M. 2011. Influence of soil properties on heavy metal sequestration by biochar amendment: 1.Copper sorption isotherms and the release of cations. Chemosphere, 82: 1431-1437.
41. Van Zwieten L., Kimber S., Morris S., Chan K. Y., Downie A., Rust J., Joseph S., and Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327:235-246.
42. Ventura M., Zhang C., Baldi E., Fornasier F., Sorrenti G., Panzacchi P., and Tonon G. 2013. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European Journal of Soil Science, 65: 186–195.
43. Walkley A., and Black I.A. 1934. An examination of Degtjareff method for determination soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
44. Woolf D., Amonette J.E., Street-Perrott F.A., Lehmann J,. and Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1, Article number: 56 (online journal). www.nature. com/ncomms/journal/v1/n5/full/ncomms1053.html.
45. Xing Y., Jingjing L., Kim M.G., Huagang H., Kouping L., Xi G., Lizhi H., Xiaoming L., Lei C., Zhengqian Y., and Hailong W. 2015. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, DOI 10.1007/s11356-015-4233-0
46. Yuan J., and Xu R. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use Manage, 27: 110–115.
47. Yuan J., Xu R., Wang N., and Li J. 2011b. Amendment of acid soils with crop residues and biochars. Pedosphere, 21: 302–308. | ||
آمار تعداد مشاهده مقاله: 689 تعداد دریافت فایل اصل مقاله: 425 |