تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,488 |
تعداد مشاهده مقاله | 9,257,727 |
تعداد دریافت فایل اصل مقاله | 6,485,593 |
پاسخ کرم خاکی Eisenia fetida به تنش شوری و آلودگی سرب در خاک تیمار شده با کود گاوی | ||
آب و خاک | ||
مقاله 4، دوره 31، شماره 5 - شماره پیاپی 55، دی 1396، صفحه 1355-1370 اصل مقاله (511.38 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i5.61802 | ||
نویسندگان | ||
مینا نظری زاده* ؛ فایز رئیسی؛ حمیدرضا متقیان | ||
دانشگاه شهرکرد | ||
چکیده | ||
شوری و آلودگی ناشی از فلزات سمی بهعنوان دو تنش زیستمحیطی میتوانند بهصورت همزمان رشد و فعالیت کرمهای خاکی را تحت تأثیر قرار دهند. اثر مشترک این دو تنش غیرزیستی بر کرمهای خاکی، بهویژه در نواحی خشک و نیمهخشک، کمتر مورد بررسی قرار گرفته است. با توجه به اهمیت کرمهای خاکی در زیستبوم، بررسی اثرمتقابل عوامل تنشزا بر رشد و فعالیت این جانداران ضروری است. در این پژوهش اثر مشترک شوری ناشی از نمک کلرید سدیم و آلودگی سرب بر جمعیت و فعالیت کرمهای خاکی Eisenia fetida در شرایط گلخانه مطالعه شد. این آزمایش با 3 فاکتور شامل آلودگی (شاهد و 30 میلیگرم سرب بر کیلوگرم خاک)، شوری (شاهد، 4 و 8 دسیزیمنس بر متر) و کود گاوی (شاهد و 4 درصد وزنی)، بهصورت فاکتوریل در قالب طرح پایهی کاملاً تصادفی با 4 تکرار اجرا گردید. نتایج نشان داد که افزایش سطوح شوری خاک قابلیت دسترسی سرب را افزایش میدهد و سمیت این فلز را برای کرمهای خاکی تشدید میکند. در مقابل افزودن کود گاوی در همهی سطوح شوری، قابلیت دسترسی این فلز را کاهش میدهد. جمعیت، وزن مرطوب و خشک کرم و وزن مرطوب و خشک فضولات تولید شده توسط کرمهای خاکی بهصورت معنیدار (05/0p | ||
کلیدواژهها | ||
اثر مشترک؛ تنش زیستمحیطی؛ تولید فضولات؛ قابلیت دسترسی سرب | ||
مراجع | ||
1- Abbaspour A., Kalbasi M., Hajrasuliha Sh., and Fotovat A. 2007. Effect of plant residue and salinity on fractions of cadmium and lead in three soils. Soil and Sediment Contamination, 16:539-555.
2- Acosta J.A., Jansen B., Kalbitz K., Faz A., and Martinez S. 2011. Salinity increases mobility of heavy metals in soils. Chemosphere, 85:1318-1324.
3- Avila G.G., Gaete H.H., Sauve S.S., and Neaman A.A. 2009. Organic matter reduces copper toxicity for the earthworm Eisenia fetida in soils from mining areas in central Chile. Chilean Journal of Agricultural Research, 69:252-259.
4- Bremner J.M., and Mulvaney R.L. 1982. Nitrogen. P. 595-622. In Page A.L. et al. (eds.) Methods of Soil Analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Madison, Wisconsin.
5- Capowiez Y., Dittbrenner N., Rault M., Triebskorn R., Hedde M., and Mazzia C. 2010. Earthworm cast production as a new behavioural biomarker for toxicity testing. Environmental Pollution, 158:388-393.
6- Edwards C.A. 2004. Earthworm Ecology. CRC Press, Boca Raton.
7- Edwards C.A. and Bohlen P.J. 1996. Biology and Ecology of Earthworms. Springer, London.
8- Falahati Marvast A., Hosseinpur A., and Tabatabaei S.H. 2013. Effect of salinity and sewage sludge on heavy metal availability and uptake by Barley plant. Journal of Water and Soil, 27(5):985-997. (in Persian with English abstract)
9- Ficher E., and Molnar L. 1997. Growth and reproduction of Eisenia fetida (Oligochaeta, Lumbricidae) in semi-natural soil containing various metal chlorides. Soil Biology and Biochemistry, 29:667-670.
10- Folt C.L., Chen C.Y., Moore M.V., and Burnaford J. 1999. Synergism and antagonism among multiple stressors. Limnology and Oceanography, 44:864-877.
11- Gee G.W., and Bauder J.W. 1986. Particle size analysis. p. 383-411. In Klute A. (ed.) Methods of Soil Analysis. Part 1. Physical and mineralogical methods. Soil Science Society of America. Madison, Wisconsin.
12- Guzyte G., Sujetoviene G., and Zaltauskaite J. 2011. Effects of salinity on earthworm (Eisenia fetida). Environmental Engineering, 3:19-20.
13- Jun T., Wei G., Griffiths B., Xiaojing L., Yingjun X., and Hua Z. 2011. Maize residue application reduces negative effects of soil salinity on the growth and reproduction of the earthworm Aporrectodea trapezoides, in a soil mesocosm experiment. Soil Biology and Biochemistry, 49:46-51.
14- Klute A. 1982. Soil pH lime requirement. p. 199-223. In Mclean E.O. (ed.) Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America. Madison, Wisconsin.
15- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421- 428.
16- Loeppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. p. 437-474. In: Suarez D.L. (ed.) Methods of Soil Analysis. Part 3. Chemical properties. Soil Science Society of America. Madison, Wisconsin.
17- Mufwanzala N., and Dikinya O. 2010. Impact of poultry manure and its associated salinity on the growth and yield of spinach (Spinacea oleracea) and carrot (Daucus carota). International Journal of Agriculture and Biology, 12:489-494.
18- Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. p. 961-1011. In Sparks D.L. et al. (eds.) Methods of Soil Analysis. Part 3. Chemical methods. Soil Science Society of America. Madison, Wisconsin.
19- Nemati F., Raiesi F., and Hosseinpur A.R. 2010. The study of population and growth characteristics of earthworm (Lumbricus terrestris L.) in a soil salinized with NaCl and the importance of organic amendments in alleviating salinity effects. Journal of Water and Soil, 24(6):1097-1108. (in Persian with English abstract)
20- Owojori O.J., Reinecke A.J., and Rozanov A.B. 2008. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biology and Biochemistry, 40:2385-2393.
21- Owojori O.J., Reinecke A.J., and Rozanov A.B. 2009. The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Applied Soil Ecology, 41:277–285.
22- Owojori O.J., and Reinecke A.J. 2010. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Applied Soil Ecology, 44:156-163.
23- Qadir M., Qureshi A.S. and Cheraghi S.A.M. 2008. Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degradation and Development, 19:214-227.
24- Reinecke A.J., and Reinecke S.A. 2004. Earthworm as test organisms in ecotoxicological assessment of toxicant impacts on ecosystems. p. 299-310. In: Edwards C.A. (ed.) Earthworm Ecology. Part 8. Earthworms and environmental pollution. CRC Press. Boca Raton. Florida.
25- Reynolds W.D., and Clarke-Topp G. 2008. Soil water desorption and imbibition: tension and pressure techniques. p. 981-998. In Carter M.R. and Gregorich E.G. (eds.) Soil Sampling and Methods of Analysis. CRC Press, Boca Raton, Florida.
26- Rhoades J.D. 1996. Salinity: electrical conductivity and total dissolved solids. p. 417–435. In Sparks D.L. et al. (eds.) Methods of soil Analysis. Part 3: Chemical properties. Soil Science Society of America. Madison, Wisconsin.
27- Saint-Denis M., Narbonne G.F., Arnaud C., and Ribera D. 2001. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate. Soil Biology and Biochemistry, 33:395-404.
28- Sharif F., Danisha M.U., Ali A.S., Khan A.U., Shahzad L., Ali H., and Ghafoor A. 2016. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of sorghum bicolor. Archives of Agronomy and Soil Science, 62: 1169-1181.
29- Sposito G., Lund L.J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46:260-264.
30- Strawn D.G., Bohn H.L., and Ocnnor G.A. 2015. Soil Chemistry. Wiley Blackwell. Hoboken, New Jersey.
31- Tabachnick B.G., and Fidell L.S. 2012. Using Multivariate Statistics (6th ed.). Pearson Publisher. Upper Saddle River, New Jersey.
32- Violante A., Cozzolino V., Perelomov L., Caporale A.G., and Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10:268-292.
33- Wang Y., Chen J., Gu W., Xu Y., Gu J., and Tao J. 2016. Earthworm activities increase the leaching of salt and water from salt-affected agricultural soil during the wet–dry process under simulated rainfall conditions. Biology and Fertility of Soils, 52:323-330.
34- Xiong T.Z., and Feng T. 2001. Enhanced accumulation of lead in Brassica pekinensis by soil-applied chloride salts. Bulletin of Environmental Contamination and Toxicology, 67:67-74.
35- Zaltauskaite J., and Sodiene I. 2010. Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida. Ekologija, 56:10-16.
36- Zaltauskaite J., and Sodiene L. 2014. Effects of cadmium and lead on the life-cycle parameters of juvenile earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 103:9-16.
37- Zhao W., Sachsenmeier K., Zhang L., Sult E., Hollingsworth R.E., and Yang H. 2014. A new bliss independence model to analyze drug combination data. Journal of Biomolecular Screening, 19:817-821. | ||
آمار تعداد مشاهده مقاله: 273 تعداد دریافت فایل اصل مقاله: 220 |