1- Alef K., and Nannipieri P. 1995. Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London.
2- Anderson J.M., and Ingram J.S.I. 1993. In Tropical Soil Biology and Fertility: A Handbook of Methods, CAB International, Wallingford, U. K.
3- Baldock J.A., and Skjemstad J.O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Journal of Organic Geochemistry, 31: 697-710.
4- Barre P., Fernandez-Ugalde O., Virto I., Velde B., and Chenu C. 2014. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects, Geoderma, 235-236: 382-395.
5- Brooks P. C., Kragt J. F., Powlson D. S., and Jenkinson D. S. 1985. Chloroform fumigation and the release of soil nitrogen. The effects of fumigation time and temperate, Journal of Soil Biology and Biochemistry, 17(6): 831-835.
6- Bruun T.B., Elberling B., and Christensen B.T. 2010. Labiality of soil organic carbon in tropical soils with different clay minerals, Journal of Soil Biology and Biochemistry, 42: 888-895.
7- Chorom M., and Rengasamy P. 1995. Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type, European Journal of Soil Science, 46(4): 657-665.
8- Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K.D., and Paul E. 2013. The Microbial efficiency matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter, Global Change Biology, 19: 988-995.
9- Deb S.K., and Shukla M.K. 2011. A review of dissolved organic matter transport processes affecting soil and environmental quality, Journal of Environmental and Analytical Toxicology, 1 (2): 1-11.
10- Deenik J. 2006. Nitrogen mineralization potential in important agricultural soils of Hawaii, Soil and Crop Management, 16: 1-5.
11- Denef K., and Six J. 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macro aggregate formation and stabilization, European Journal of Soil Science, 56: 469-479.
12- Denef K., Six J., Merckx R., and Paustian K. 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy, Journal of Plant and Soil, 246: 185-200.
13- El-Sharkawi H.M. 2012. Effect of nitrogen sources on microbial biomass nitrogen under different soil types, ISRN Soil Science. 1-7.
14- Eltantawy I.M. and Arnold P.W. 1973. Reappraisal of ethylene glycol mono-ethyl ether (EGME) method for surface area estimation of clays, Journal of Soil Science, 24: 232-238.
15- Feng W., Plante A., and Six J. 2013. Improving estimates of maximal organic carbon stabilization by fine soil particles, Biogeochemistry, 112: 81-93.
16- Fontaine S., and Barot S. 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation, Ecology Letters, 8: 1075-1087.
17- Golchin A., Clarke P., and Oades J.M. 1996. The heterogeneous nature of microbial products as shown by solid-state 13C CPIMAS NMR spectroscopy, Biogeochemistry, 34: 71-97.
18- Grandy A.S., Strickland M.S., Lauber C.L., Bradford M.A., and Fierer N. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry, Geoderma, 150: 278-286.
19- Houlton B.Z., and Morford S.L. 2015. A new synthesis for terrestrial nitrogen inputs, Journal of Soil, 1: 381-397.
20- Jackson M.L. 1979. Soil Chemical Analysis, Advanced Course, Prentice Hall incorporated. p. 895.
21- Jansen B., Nierop K.G.J., and Verstraten J.M. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe (II), Fe (III) and Al (III) in soil solutions determined by diffusive gradients in thin films, Analytica Chimica Acta, 454: 259-270.
22- Kahle M., Kleber M., and Jahn R. 2004. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties, Organic Geochemistry, 35: 269-276.
23- Kaiser K., and Guggenberger G. 2003. Mineral surfaces and soil organic matter, European Journal of Soil Science, 54: 219-236.
24- Kalisz B., Lachacz A., and Glazewski R. 2010. Transformation of some organic matter components in organic soils exposed to drainage, Turkish Journal of Agriculture and Forestry, 34: 245-256.
25- Kleber M., Sollins P., and Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85: 9-24.
26- Knicker H. 2011. Soil organic N an under-rated player for C sequestration in soils, Journal of Soil Biology and Biochemistry, 43: 1118-1129.
27- Kögel-Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., and Leinweber P. 2008. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry, Journal of Plant Nutrition and Soil Science, 171: 61-82.
28- Masion A., Vilgea-Ritter A., Rose J., Stone W.E., Teppen E.B.J., Rybacki D., and Bottero J.E.Y. 2000. Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates, Environmental Science and Technology, 34: 3242-3246.
29- Mikutta R., Kleber M., Torn M.S., and Jahn R. 2006. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance, Biogeochemistry, 77: 25-56.
30- Motavalli P.P., Palm C.A., Parton Z.W.J., Elliott E.T., and Frey S.D. 1995. Soil pH and organic C dynamics in tropical forest soils, Journal of Soil Biology and Biochemistry, 27 (12): 1589-1599.
31- Muller T., and Hoper H. 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications, Journal of Soil Biology and Biochemistry, 36 (6): 877-888.
32- Nannipieri P., and Eldor P. 2009. The chemical and functional characterization of soil N and its biotic components, Journal of Soil Biology and Biochemistry, 41: 2357-2369.
33- Nguyen B.V., Olk D.C., and Cassman K.G. 2004. Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils, Soil Science Society of American Journal, 68: 1266-1277.
34- Pronk G.J., Heister K., and Kögel-kanber I. 2013. Is turnover and development of organic matter controlled by mineral composition, Journal of Soil Biology and Biochemistry, 67: 235-244.
35- Rayment G.E., and Lyons D.J. 2011. Total Soil-N, Semi Micro Kjeldahl Automated Color, FIA. In: Rayment G.E. and Lyons D.J. (eds.). Soil Chemical Methods-Australasia, CSIRO Publishing, Melbourne.
36- Reichert J.M., Norton L.D., Favaretto N., Huang C.H., and Blume E. 2009. Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy, Soil Science Society of American Journal, 73: 1369-1377.
37- Rillig M.C., Caldwell B.A., Wösten H.A.B., and Sollins P. 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence, Biogeochemistry, 85: 25-44.
38- Sanderman J., and Maddern T. 2014. Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals, Biogeochemistry, 121: 409-424.
39- Scherer H.W., Feils E., and Beuters P. 2014. Ammonium fixation and release by clay minerals as influenced by potassium, Plant, Soil and Environment, 60 (7): 325-331.
40- Schimel J.P., and Schaeffer S.M. 2012. Microbial control over carbon cycling in soil, Front Microbiologica, 3: 1-11.
41- Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J., and Manning D.A.C. 2011. Persistence of soil organic matter as an ecosystem property, Nature, 478: 49-56.
42- Scott E., and Rothstein D.E. 2014. The dynamic exchange of dissolved organic matter percolating through six diverse soils, Journal of Soil Biology and Biochemistry, 69: 83-92.
43- Six J., and Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool, Journal of Soil Biology and Biochemistry, 68: 4-9.
44- Six J., Elliott E.T., and Paustian K. 2000. Soil macro aggregate turnover and micro aggregate formation: a mechanism for C sequestration under no tillage agriculture, Journal of Soil Biology and Biochemistry, 32: 2099-2103.
45- Smernik R., and Skjemstad J. 2009. Mechanisms of organic matter stabilization and destabilization in soils and sediments: conference introduction, Biogeochemistry, 92: 3-8.
46- Vaieretti M.V., Perez H.N., and Gurvich D.E. 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in montane woodland in central Argentina, Journal of Plant and Soil, 21: 205-278.
47- Van Veen J.A., and Kuikman P.J. 1990. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 11: 213-233
48- Vogel C., Babin D., Pronk G.J., Heister K., Smalla K., and Kögel-Knabner I. 2014. Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils, Journal of Soil Biology and Biochemistry, 79: 57-67.
49- Vogel C., Heister K., Buegger F., Tanuwidjaja I., Haug S., Schloter M., and Kögel-Knabner I. 2015. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions, Biology and Fertility of Soils, 1-17.
50- Von Lützow M., Kogel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., and Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions, European Journal of Soil Science, 57: 426-445.
51- Voroney P., and Derry D. 2008. Origin and distribution of nitrogen in soil. Agronomy, 49: 1-30.
52- Walkley A., and Black I.A. 1934. An Examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Journal of Soil Science, 37: 29-37.
53- Wood M., and Cooper J.E. 1988. Acidity, aluminum and multiplication of Rhizobium Trifolii: possible mechanisms of aluminum toxicity, Journal of Soil Biology and Biochemistry, 20: 95-99.
54- Yoder L. 1919. Adaptation of the mohr volumetric method to general determinations of chlorine, Journal of Industrial and Engineering Chemistry, 11(8): 755-755.
55- Yu W.H., Li N., Tong D.S., Zhou C.H., Lin C.X.C., and Xu C.Y. 2013. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review, Applied Clay Science, 80: 443-452.
56- Zech W., Nicola S., Guggenberger G., Kaiser K., Lehmann J., Miano T.M., Miltner A., and Schroth G. 1997. Factors controlling humification and mineralization of soil organic matter in tropics, Geoderma, 79: 117-161.
57- Zwarun A.A., Bloomfield B.J., and Thomas G.W. 1971. Effect of soluble and exchangeable aluminum on a soil Bacillus, Soil Science Society of American Journal, 35: 460-463.