تعداد نشریات | 50 |
تعداد شمارهها | 1,872 |
تعداد مقالات | 19,702 |
تعداد مشاهده مقاله | 11,508,843 |
تعداد دریافت فایل اصل مقاله | 7,588,359 |
شناسایی مولکولی و تعیین خصوصیات محرک رشدی سویههای باکتری جدا شده از ریزوسفر گندم | ||
آب و خاک | ||
مقاله 9، دوره 31، شماره 6 - شماره پیاپی 56، اسفند 1396، صفحه 1712-1723 اصل مقاله (1.2 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v31i6.65753 | ||
نویسندگان | ||
ویدا همتی1؛ هادی اسدی رحمانی* 2؛ شکوفه رضایی1 | ||
1دانشگاه آزاد اسلامی واحد کرج | ||
2موسسه تحقیقات خاک و آب | ||
چکیده | ||
باکتریهای محرک رشد گیاه از طریق مکانیسم های مختلف مانند حلکنندگی فسفات، تولید اکسین و سیدروفور باعث افزایش عملکرد گیاهان زراعی میشوند. در این تحقیق جداسازی و شناسایی باکتریهای ریزوسفر گندم انجام شد و برخی از خصوصیات محرک رشدی از قبیل تولید اکسین، سیدروفور و حلکنندگی فسفات معدنی مورد اندازه گیری قرار گرفت. برای غربالگری ژنتیکی 20 جدایه مورد بررسی از روش آنالیز محدودگر دیانای ریبوزمی تکثیری یا ARDRA استفاده شد. بدین منظور پس از انجام PCR با استفاده از آغازگرهای عمومی 27F و 1492R برای تکثیر ناحیه ژنی 16S rDNA، از آنزیمهای برشی HpaIIو RsaI برای هضم ناحیه ژنی 16S rDNA استفاده شد. نتایج غربالگری ژنتیکی نشان داد پس از هضم ناحیه تکثیر شده با آنزیمهای برشی تنوع قابل ملاحظه ای مشتمل بر هفت الگوی برشی قابل مشاهده است. گونههای Chryseobacterium ginsenosidimutans،C. lathyri ، C. piperi، C. taiwanense، Novosphingobium aromaticivorans، Pedobacter duraquae و Sphingomonas koreensis شناسایی شدند. نتایج نشان داد که تمامی جدایهها قادر به تولید اکسین بودند که بیشترین اکسین تولید شده (93/25 میلیگرم در لیتر) مربوط به جدایه F1 بود. همچنین تنها سه جدایه F3، F45 و F46 توانایی تولید سیدروفور در محیط CAS آگار را دارا بودند. در مورد توان حلکنندگی فسفات معدنی، نتایج نشان داد که تنها دو جدایه توانایی حلکنندگی فسفات را داشتند که در این میان جدایه F6 (16/4 قطر هاله به کلنی) بیشترین توان حلکنندگی را داشت. نتایج نشان داد که تمامی جدایه ها قادر به تولید اکسین بودند که بیشترین اکسین تولید شده (93/25 میلی گرم در لیتر) مربوط به جدایه F1 بود. همچنین تنها سه جدایه F3، F45 و F46 توانایی تولید سیدروفور در محیط CAS آگار را دارا بودند. در مورد توان حل کنندگی فسفات معدنی، نتایج نشان داد که تنها دو جدایه توانایی حل کنندگی فسفات را داشتند که در این میان جدایه F6 (16/4 قطر هاله به کلنی) بیشترین توان حل کنندگی را داشت. | ||
کلیدواژهها | ||
اکسین؛ باکتریهای محرک رشد گیاه؛ سیدروفور | ||
مراجع | ||
1- Ahmad F., Ahmad L., and Saghir M. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29:29-34.
2- Alexander D.B., and Zuberer D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1):39-45.
3- Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17): 3389-3402.
4- Asadi Rahmani H., and Rafiei S. 2013. Survey the ability of flavobacterium sp. bacteria in solubilization of insoluble phosphate. Journal of Cellular and Molecular Researches (Iranian Journal of Biology), 26(4): 472-479. (in Persian with English abstract)
5- Asghar H.N., Zahir Z.A., and Arshad M. 2004. Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Australian Journal of Agricultural Research 55:187-194.
6- Banerjee M., Yesmin R.L., and Vessey J.L. 2006. Plant-growth- promoting rhizobacteria as biofertilizers and biopesticides. P. 137-181. In: Handbook of microbial biofertilizers. Ed., Rai, M., K., Food Production Press. U.S.A.
7- Benizri E., Baudoin E., and Guckert A. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11(5):557-574.
8- Bent E., Tvzun S., Chanway C.P., and Enebak S. 2001. Alterations in plant growth and root hormone levels of lodge pole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, 47:793-800.
9- Bradford K.J. 1996. Population-based models describing seed dormancy behaviour: lmplications for experimental design and interpretation. In Plant Dormancy, Lang, G.A. (ed). Oxford, UK: CAB International. P. 313-339.
10- Cakmakci R.I., Donmez M.F., and Erdogan U. 2007. The effect of Plant Growth Promoting Rhizobacteria on barely seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry, 31:189-199.
11- Cassan F., Vanderleyden J., and Spaepen S. 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33(2):440-459.
12- Chen Y., Jurkevitch E., Bar-Ness E., and Hadar Y. 1994. Stability constants of pseudobactin complexes with transition metals. Soil Science Society of America Journal, 58:390-396.
13- Creus C.M., Sueldo R.J. and Barass C.A. 1996. Azospirillum inoculation in pregerminating wheat seeds. Canadian Journal of Microbiology, 42:83-86.
14- Doyle J.J., and Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19:11-15.
15- El-Meleigi M.A. 1998. Effect of Pseudomonas isolates applied to corn, sorghum and wheat seeds on seedling growth and corn yield. Canadian Journal of Plant Sciences, 69: 101-108.
16- Forouzi M., Ehteshami S.M.R., Esfahani M., and Rabiee M. 2015. Effect of seed size on emergence rate, germination indices, seedling growth and yield of four bread wheat cultivars (Triticum aestivum L.). Cereal Research, 5(1):67-82. (in Persian with English abstract)
17- Gholami A., Shahsavani S., and Nezarat S. 2009. The Effect of plant growth-promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Proceedings of Word Academy of Science, Engineering and Technology, 37: 2070-3740.
18- Glick B.R., Jacobson C.B., Schwarze M.M.K., and Pasternak J.J. 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40:911-915.
19- International Seed Testing Association (ISTA). 2008. Handbook of vigor test methods (2nd ed.). International Seed Testing Association, Zurich, Switzerland.
20- Jarak M., Mrkovački N., Bjelić D., Jošić D., Hajnal-Jafari T., and Stamenov D. 2012. Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research 6(27):5683-5690.
21- Jiang H., Dong H., Zhang G., Yu B., Chapman L.R., and Fields M.W. 2006. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Applied and Environmental Microbiology, 72(6):3832-3845.
22- Khakipour N., Khavazi K., Mojallali H., Pazira E., and Asadi Rahmani H. 2008. Production of auxin hormone by fluorescent pseudomonads. American-Eurasian Journal of Agricultural and Environmental Science, 4:687-692.
23- Khalid A., Arshad M., and Zahir Z.A. 2004. Screening plant growth promoting rhizobacteria for improving growth and yield wheat. Journal of Applied Microbiology, 96:473-480.
24- Kloepper J.W., and Schroth M.N. 1978. Plant growth-promoting rhizobacteria on radish. Proceeding of 4th International Conference of Plant Pathological Bacteriology, 879-882. Angeres.
25- Kloepper J.W., Lifshitz R., and Zablotowicz R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7(2):39-44.
26- Maghami M., Olamaee M., Rasuli Sadaghiani M.H., and Dordipour E. 2013. Isolation and identification of Pseudomonas fluorescens and evaluation of their plant growth promoting properties in soils Golestan province. Journal of Soil Management and Sustainable Production, 3(2):251-264. (in Persian with English abstract)
27- Noori M.S.Sh., and Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. Plant Pathology and Microbiology, 3:1-4.
Patten C., and Glick B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42:207-220
28- Rashid M., Khalil S., Ayub N., Alam S., and Latif F. 2004. Organic Acids productions solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7:187-196.
29- Seyed Sharifi R., and Khavazi K. 2012. Effect of seed inoculation with plant growth promoting rhizobacteria (PGPR) on germination components and seedling growth of corn (Zea mays L.). Journal of Agroecology, 3(4):506-513. (in Persian with English abstract)
30- Shaukat K., Affrasayab S., and Hasnain S. 2006. Growth responses of (Helianthus annus) to plant growth-promoting rhizobacteria used as a biofertilizer. Journal of Agriculture Research, 1(6):573-581.
31- Soltani Tolarood A., Salehrastin N., Khavazi K., Asadi H., and Abaszadeh P. 2008. Isolation and study plant growth promoting properties of Pseudomonas fluorescens species in soils of Iran. Iranian Journal of Soil and Water Science, 21:187-199. (In Persian)
32- Srivastava N.H., Bhandari V., and Bhatt A.B. 2014. PGPR Isolated from rhizospheric soil of Zanthoxylum armatum DC. in Garhwal Himalaya. International Journal of Herbal Medicine, 2(1):100-108.
33- Thomashow L.S., and Waller D.M. 1994. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology, 170:3499-3508.
34- Wu S.C., Cao Z.H., Li Z.G., and Cheung K.C. 2005. Effect of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125:155-166. | ||
آمار تعداد مشاهده مقاله: 448 تعداد دریافت فایل اصل مقاله: 403 |