تعداد نشریات | 49 |
تعداد شمارهها | 1,846 |
تعداد مقالات | 19,518 |
تعداد مشاهده مقاله | 9,307,260 |
تعداد دریافت فایل اصل مقاله | 6,540,723 |
بررسی اثر کاربرد بیوچار و هیدروچار کاه گندم بر خصوصیات فیزیکی یک خاک لوم- شنی | ||
آب و خاک | ||
مقاله 8، دوره 32، شماره 2 - شماره پیاپی 58، تیر 1397، صفحه 387-397 اصل مقاله (975.96 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v32i2.70445 | ||
نویسندگان | ||
ایمان نیک روش1؛ سعید برومند نسب2؛ عبدعلی ناصری1؛ امیر سلطانی محمدی* 1 | ||
1دانشگاه شهید چمران اهواز | ||
2استاد گروه آبیاری وزهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز. | ||
چکیده | ||
بیوچار و هیدروچار بهعنوان مواد پایدار و غنی از کربن شناخته میشوند. این مواد دارای ساختار بسیار متخلخل و سطح بزرگ واکنشپذیر میباشند که بسته به نوع ماده اولیه مورد استفاده و دمای فرآیند متفاوت است. استفاده از این مواد برای تحقق اهداف کشاورزی در بهبود طیف وسیعی از خصوصیات خاک، از جمله اثر آهک، ظرفیت نگهداشت آب و حفظ مواد مغذی توصیه میشود. هدف از این مطالعه بررسی تأثیر کاربرد بیوچار کاه گندم (BW) و هیدروچار کاه گندم (HW) بر خواص فیزیکی خاک شامل منحنی رطوبتی، وزن مخصوص ظاهری و تخلخل کل میباشد. تیمارهای آزمایش در این پژوهش شامل سه سطح بیوچار و هیدروچار کاه گندم (2= HW2و BW2، ۵= HW5و BW5، ١۰= HW10و HW10 گرم بر کیلوگرم خاک) در سه تکرار میباشد. این تیمارها با اختصاص سه عدد لایسیمتر بهعنوان تیمار شاهد در مجموع در 21 عدد لایسیمتر با بافت خاک لوم- شنی در قالب طرح بلوک کامل تصادفی اعمال شدند. نتایج مقایسه میانگینهای وزن مخصوص ظاهری نشان داد افزودن تیمارهای HW2، HW5، HW10، BW2، BW5 و BW10 به خاک نسبت به تیمار شاهد باعث کاهش وزن مخصوص ظاهری خاک به ترتیب به مقدار 97/8، 72/11، 17/15، 59/7، 34/10 و 10/13 درصد شده است. همچنین نتایج حاکی از آن بود که تیمارهای HW2، HW5 و HW10 نسبت به تیمارهای BW2، BW5 و BW10 باعث کاهش بیشتر وزن مخصوص ظاهری خاک به ترتیب به مقدار 18/18، 35/13 و 80/15 درصد شده است. نتایج مقایسه میانگینهای تخلخل کل نشان داد افزودن تیمارهای HW2، HW5، HW10، BW2، BW5 و BW10 به خاک نسبت به تیمار شاهد باعث افزایش تخلخل کل خاک به ترتیب به مقدار 78/8، 84/11، 77/15، 48/6، 75/9 و 22/13 درصد شده است. نتایج نشان داد درصد رطوبت قابل دسترس خاک برای تیمارهای HW2، HW5، HW10، BW2، BW5 و BW10 نسبت به تیمار شاهد به ترتیب 11/24، 61/43، 88/78، 34/16، 30/34 و 74/69 درصد افزایش یافت. بهطور کلی نتایج بیانگر اثرات مؤثر کاربرد بیوچار و هیدروچار کاه گندم بر بهبود خصوصیات فیزیکی خاک با بافت نسبتاً سبک میباشند. | ||
کلیدواژهها | ||
بیوچار؛ ماده آلی؛ منحنی رطوبتی خاک؛ هیدروچار | ||
مراجع | ||
1- Abel S., Peters A., Trinks S., Schonsky H., Facklam M., and Wessolek G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203: 183–191.
2- Baiamonte G., De Pasquale C., Marsala V., Cimo G., Alonzo G., Crescimanno G., and Conte P. 2015. Structure alteration of a sandy-clay soil by biochar amendments. Journal of Soils and Sediments, 15: 816-824.
3- Brown R. 2009. Biochar for environmental management: Science and technology. Earthscan: London, UK.
4- Chan KY., Van Zwieten L., Meszaros I., Downie A., and Joseph S. 2007. Agronomic values of green waste bio-chars as soil amendments. Aust J Soil Res, 45:629–634.
5- Chintala R., Mollinedo J., Schumacher T.E., Papiernik S.K., Malo D.D., Clay D.E., Kumar S., and Gulbrandson D.W. 2013. Nitrate sorption and desorption in bio-chars from fast pyrolysis. Microporous Mesoporous Mater, 179: 250–257.
6- Ding Z., Hu X., Wan Y., Wang S., and Gao B. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch andcolumn tests. J. Ind. Eng. Chem, 33: 239–245.
7- Divband Hafshejania L., Hooshmanda A., Naseria A., Soltani Mohammadia A., Abbasib F., and Bhatnagarc A. 2016. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95: 101–111.
8- Fang J., Gao B., Chen J., and Zimmerman A. R. 2015. Hydro-chars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, 267: 253–259.
9- Gajic´ A., and Koch H. J. 2012. Sugar beet (Beta vulgaris L.) growth reduction caused by hydrochar is related to nitrogen supply. J. Environ. Qual, 41: 1067–1075.
10- Guiotoku M., Rambo CR., Hansel FA., Magalhaes WLE., and Hotza D. 2009. Microwave-assisted Hydrothermal Carbonization of Lignocellulosic Materials. Mater Lett, 63: 2707-2709.
11- Hardie M., Clothier B., Bound S., Oliver G., and Close D. 2014. Does biochar influence soil physical properties and soil water availability? Plant Soil, 376: 347–361.
12- Heilmann SM., Davis HT., Jader LR., Lefebvre PA., Sadowsky MJ., Schendel FJ, et al. 2010. Hydrothermal Carbonization of Microalgae. Biomass Bioenerg, 34: 875-882.
13- Hseu Z. Y., Jien S. H., Chein W. H., and Liou R. 2014. Impacts of biochar on physical properties and erosion potential of a mudstone slope land soil. The scientific world journal, Doi: 10.1155/2014/602197.
14- Kumar S., Masto RE., Ram LC., Sarkar P., George J., and Selvi VA. 2013. Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecological Engineering; 55: 67–72.
15- Laird D., Fleming P., Wang B., Horton R., Laird Z., and Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158: 436–442.
16- Lehmann J., Gaunt J., and Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change, 11: 403–427.
17- Lehmann J. 2007. A Handful of Carbon. Nature, 447: 143-144.
18- Lehmann J., and Joseph S. 2009. Biochar for environmental management: science and technology. Earthscan: London, UK.
19- Lei O., and Zhang R. 2013. Effects of bio-chars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of soils and sediments, 13: 1561-1572.
20- Libra J.A., Kammann Ro. KS., Funke C., Berge A., Neubauer N.D., et al. 2011. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels, 2: 89-124.
21- Liu Y., Zhao X., Li J., Ma D., and Han R. 2012. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin. Water Treat, 46: 115–123.
22- Maˇsek O., Brownsort P., Cross A., and Sohi S. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103: 151–155.
23- Novak JM., Busscher W.J., Watts D.W., Amonette J.E., Ippolito J.A., Lima I.M., Gaskin J., Das K.C., Steiner C., Ahmedna M., Rehrah D., and Schomberg H. 2012. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci, 177(5):310–320.
24- Ouyang L., Wang F., Tang J., Yu L., and Zhang R. 2013. Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition, 13(4): 991-1002.
25- Rondon M.A., Molina D., Hurtado M., Ramirez J., Lehmann J., Major J., et al. 2006. Enhancing the Productivity of Crops and Grasses while Reducing Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical soils. Proceeding of the 18th World Congress of Soil Science; Pennsylvania, USA.
26- Sevilla M., and Fuertes A.B. 2009. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem-Eur J, 15: 4195-4203.
27- Snehota M., Dubovec M., Dohnal M., and Cislerova M. 2009. Retention curves of soil from the Liz experimental catchment obtained by three methods. Soil and Water Res, 4(2): 56-513.
28- Sohi S., Lopez-Capel E., Krull E., and Bol R. 2009. Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 64.
29- Stella Mary G., Sugumaran P., Niveditha S., Ramalakshmi B., Ravichandran. P., and Seshadri S. 2016. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agricult, 5:43–53.
30- Sun Y., Gao B., Yao Y., Fang J., Zhang M., Zhou Y., Chen H., and Yang L. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240: 574–578.
31- Sun Z., Arthur E., De Jonge L. W., Elsgaard L., and Moldrup P. 2015. Pore Structure Characteristics after 2 Years of Biochar Application to a Sandy Loam Field. Soil Science, 180: 41-46.
32- Tejada M., Garcia-Martinez A., and Parrado J. 2009. Effects of a vermicompost composted with beet vinasse on soil properties. soil losses and soil restoration. Catena, 77(3): 238-247.
33- Titirici M.M., Antonietti M., and Baccile N. 2008. Hydrothermal Carbon from Biomass: A Comparison of the Local Structure from Poly- to Monosaccharides and Pentoses/Hexoses. Green Chem, 10: 1204-1212.
34- Titirici M.M., Demir-Cakan R., Baccile N., and Antonietti M. 2009. Carboxylate-Rich Carbonaceous Materials via One-Step Hydrothermal Carbonization of Glucose in the Presence of Acrylic Acid. Chem Mater, 21: 484-490.
35- Van Zwieten L., Kammann C., Cayuela M. L., Singh B., Joseph S., Kimber S., Clough T. J., and Spokas K. A. 2015. Biochar effects on nitrous oxide and methane emissions from soil. In: LEHMANN J. and JOSEPH S. (eds.) Biochar: Science, Technology and Implementation, 487-518.
36- Xu G., Lv Y., Sun J., Shao H., and Wei L. 2012. Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications. Clean-Soil Air Water, 40: 1093-1098.
37-Yu Oy., Raichle B., and Sink S. 2013. Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4: 1-9. | ||
آمار تعداد مشاهده مقاله: 674 تعداد دریافت فایل اصل مقاله: 430 |