1- Abou Auda M., and Elshakhali E. 2010. Cadmium and zinc toxicity effects on growth and mineral nutrients of carrot (Daucus carota). Pakistan Journal of Botany, 42(1): 341-351.
2- Bates L.S., Waldren, R. P., and Teare I. D. 1973. Rapid determination of proline for water stress studies, Plant Soil, 39: 205–207.
3- Barcelo J., Poschenrieder C., Andreu I., and Gunse B. 1986. Cadmium– induced decrease of water stress resistance in bush been plants (L. cv. contender). I. Effects of Cd on water potential, relative water content, and cell wall elasticity. Journal Plant Physiology, 125:17-25.
4- Behtash F., Tabatabaee S.J., Malakooti M.J., Sororoaldin M.H., and Oustan Sh. 2009. Effect cadmium and Silicon on growth and some physiological properties of red beet. Journal of Sustainable Agricultural Science, 20.2 (1): 53-67.
5- Borraccino G., Mastropasqua L., DeLeonardis S., and Dipierro S. 1994. The role of ascorbic acid system in delaying the senecence of oat (Avena sativa L.) leaf segments. Journal of Plant Physiology, 144: 161–166.
6- Chen X., Wang j., Shi Y., Zhao M.Q., and Chi Y. 2010. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Physiology, 52: 41-46.physiology
7- Chen S.L., and Kao C.H. 1995. Cd induced changes in proline level and peroxidase activity in roots of rice seedlings. Plant Growth Regulation, 17:67-71.
8- Cho U. H., and Park J.O. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156:1-9.
9- DiCagno R., Guidini L., DeGara L., and Soldatini G.F. 2001. Combined cadmium and ozone treatment affect photosynthesis and ascorbate-dependent defense in sunflower. New Phytologist, 151, 627-636.
10- Farouk S., Mosa A.A., Taha A.A., Ibrahim H.M., and El-Gahmery A.M. 2011. Protective Effect of Humic acid and Chitosan on Radish (Raphanus sativus L. Var. sativus) plant subjected to Cadmium stress. Journal of stress physiology and Biochemistry, 7(2): 99-116.
11- Gouia H., Ghorbal M.H., and Meyer C. 2001. Effect of cadmium on activity of nitrat reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology, 38:629-638.
12- Haghiri F. 1973. Cadmium uptake by plant. Journal of Environmental Quality, 2:93-95.
13- Haghighi M., Kafi M., Sadat Taqavi P., Kashi A.K., and Savabeghi Gh. 2008. The variation of lettuce enzyme photosynthesis activity under the influence of lettuce toxicity. Journal of Horticulture (Science and Technology of Agriculture), 22: 2-26.
14- Hegedus A., Erdi S., and Horvath G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlingNunder cadmium stress. Plant Science, 160:1085-1093.
15- Hernandez Y., Lobo M.G., and Gonzalen M. 2006. Determination of vitamin c in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96: 654-664.
16- Hodaji M., and Jalalian A. 2004. Distribution of nickel, manganese and cadmium in dung and agricultural products in the Mobarakeh Steel Company. Science and Technology of Agriculture and Natural Resources, 3: 66-55.
17- Karim G., and Nojavan M. 2007. Effect of cadmium on growth parameters, proline content, sugars and soluble protein in lentils (Lens miller), Research and Development in Agriculture and Horticulture, 76: 53-47.
18- Khan D.H., and Frankland B. 1983. Effect of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant and Soil, 70:335-345.
19- Lin L.D., HU K., Majing J., Qiu W., Wang P., and Zhang Sh. 2011. Effects of cadmium on the growth and physiological characteristics of sorghum plants. African Journal of Biotechnology, 10(70) 15771-15776.
20- Lindsay W.L., and Norvell W.A. 1978. Development of DTPA soil test for zinc, Iron, manganese, and copper. Soil Science Society American Journal, 42: 421-428.
21- Lichtenthaler H.K. 1987. Chlorophylls and Cartenoides: Pigmentsof hotosynthetic bio-membranes. In: Methods in Enzymol. (eds. S.P. Colowick and N.O. Kaplan) Academic Press. New York, 48: 350-382.
22- Mazhoudi A., Chaoui M.H., Ghorbal E., and Ferjani E. 1997. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science, 127, 129-137.
23- Mok M. 1994. Cytokinins and plant development- An overview. PP. 155-166. In: Mok, D. and M. Mok (Eds.), Cytokinins: Chemistry, Activity, and Function, CRC Press, Boca Raton, FL.
24- Mishra S., Tripathi R. D., Srivastava S., Dwivedi S., and Kumar T. 2009. Thiol metabolism play signicant role during cadmium detoxi, cation by Ceratophyllum demersum L. Bioresource Technology, 100: 2155-2161.
25- Nazemi S., and Khosravi A. 2011. A Survey on the Status of Heavy Metals in Soil, Water, and Vegetable Land. Journal of Knowledge and Health, 5(4): 31-28.
26- Ouzounidou G. 1995. Cu-ions mediated changes in growth chlorophyll and other ion contents in cu-tolerant koleria splenders. Biology Plantarum, 37:71-79.
27- Oliveira J., Oliva M., and Cambraia J .1994. Effect cadmium on cholorophyll contents and on peroxidase activity in soybean. Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, MG. 36570-000, Brazil.
28- Peyvast Gh. 2009. Vegetables. Scholarly Publishing. Fifth Edition. 577 p.
29- Pourakbar L., and Ashrafi R. 2011. Effect of cadmium on hydrogen peroxide production and activity of some antioxidant enzymes in corn (Zea mays L.). Tarbiat Moallem University of Science, 9(3): 484-473.
30- Ritchie S. W., and Nguyen H.T. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30: 105-111.
31- Sanitadi Toppi L., and Gabbrielli R. 1999. Response to cadmium in higher plants- review. Environmental and Experimental Botany, 41:105-130.
32- Salaskar D., Shrivasta M., and Kale S.P. 2011. Bioremidation Potential of spinach (Spinacia olelacea L.) for decontamination of cadmium in soil. Current Science, 101:1-5.
33- Solomon A., and Beer S. 1994. Effect of NaCl on the carboxylating activity of rubisco and absence of proline related compatible solutes. Plant Physiology, 108: 1387- 1394.
34- Sharma R.K., Agrawal M., and Marshal A. 2007. Heavy metal contamination of soil and vegetables in surburban area of Varanasi, India. Ecotoxicology and Environmental Safety, 66: 258-266.
35- Taji H., and Golchin A. 2010. Investigation of different levels of cadmium and sulfur on yield and concentration of cadmium and some of the low-level elements in maize leaf and corn root (Zea mays L.) in greenhouse conditions, Science and Technology of Greenhouse Cultivars, 4: 32-23.
36- Vitoria A.p., Dacunha M., and Azevedo R.A. 2005. Ultra-structural changes of radish leaf exposed to cadmium. Enviromental and Experimental Botany, 58: 47-52.
37- Vassilev A., and Yordanov I. 1997. Reductive analysis of factors limiting growth of cadmium treated Plants. Plant Physiology, 23(3–4), 114–133.
38- Wallace DM. 1987. Large and Small Phenol Extraction Methods in Enzymology, Academic Press, New York.
39- Zhao Y., Aspinall D., and Paleg L.G. 1992. Protection of membrane integrity in Medicago saliva L. by glycinebetaine against the effects of freezing. Journal of Plant Physiology, 140: 541-543.
40- Zhang H.H., Tang M., and Zheng C. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology, 46: 306-311.