1- Abrishamchi A., Jamali S., Mariño M. A., and Tajrishy M. 2006. Stream flow forecasting and reservoir operation models using fuzzy inference systems. P. 373-382 Operations Management Conference 9-12 May. 2006, California, USA.
2- Abrishamchi A., Tajrishy M., Tafarojnoruz A., Chehrenegar B., and Shadzad, Sh. 2008. Using satellite data to improve the accuracy of river flow forecasting modelsa case study of Zayande-rood river basin, Iran. AWRA 2008 SPRING SPECIALTY CONFERENCE 17-19 March.2008, San Mateo, California.
3- Adamowski J., and Sun K. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390: 85-91.
4- Ahmadi F., Radmanesh F., and Mirabbasi Najafabadi R. 2016. Comparing the performance of Support Vector Machines Bayesian networks in predictiong daily river flow (Case study: Baranduz Chai River). Journal of Water and Soil Condervation, 22(6):171-186 (In Persian with English abstract).
5- Anbari M. J., Tabesh M., and Roozbahani A. 2017. Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. Journal of Environmental Management, 190: 91-101.
6- Araghinejad S., and Karamouz M. 2005. Long-Lead Streamflow Forecasting using Artificial Neural Networks and Fuzzy Inference System. Journal of Iran-Water Resources Research, 1(2): 29-41 (In persian with English abstract ).
7- Bayes Server. 2017. Bayes Server researcher user guide, verion 7.25.
8- Eghtedar Nezhad M., Bazrafshan O., and Sadeghi Lari A. 2017. Adaptive Evaluation of SPI, RDI and SDI Indices in Analyzing the Meteorological and Hydrological Drought Characteristics (Case Study: Bam Plain). Journal of Water and Soil Science , 26(4.2): 61-81 (In Persian with English abstract).
9- Halkidi M., Batistakis Y., and Vazirgiannis. M. 2001. on clustering validation techniques. J. Intel. Infor. Sys, 17: 107-145.
10- Heckman J. J., and Snyder Jr J. M. 1996. Linear probability models of the demand for attributes with an empirical application to estimating the preferences of legislators (No. w5785). National bureau of economic research.
11- Hugin Expert. 2017. Hugin researcher user guide, version 8.5.
12- Humphrey G. B., Gibbs M. S., Dandy G. C., and Maier H. R. 2016. A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540: 623-640.
13- Kardan moghadam H. and Roozbahani A. 2015. Assessment of Byesian Network Models in Monthly Predecion of Groundwater Level (Case study: Birjand aquifer). Journal of Water and Irrigation Management, 5(2): 139-151 (In Persian with English abstract).
14- Liedloff A.C., Woodward E.L., Harrington G.A., and Jackson S. 2013. Integrating indige-nous ecological and scientific hydro-geological knowledge using a BayesianNetwork in the context of water resource development. Journal of Hydrology, 499: 177–187.
15- Mollaramezani M., and Tabesh M. 2014. Long-term forecasting of urban water demand using Bayesian networks, 8th national congress of Civil engineering , Noshirvani university of technology, Babol, Iran (In Persian ).
16- Momeni M. 2011. Clustering of data (Cluster analysis)" Moalef publication (1): 130 (In Persian)
17- Murphy K. 2001. An introduction to graphical models. Rap. tech: 19-1.
18- Naqdi Bansole K., and Musavi J. 2014. Prediction of Zayandehrood dam reservoir inflow using the K-Nearest Neighbors algorithm (KNN). 5th National Conference on water Resources Management. 2014, Tehran, Iran.
19- Noori N., and Latif K. 2016. Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533: 141-151.
20- Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M. H., Farokhnia A., and Gousheh, M. G. 2011. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3): 177-189.
21- Rao A.R., and Srinivas V.V. 2008. Regionalization of Watersheds: an Approach Based onCluster Analysis, vol. 58. Springer Science & Business Media.
22- Roozbahani A. 2011. Risk Based Decision Making Model of Urban Water Systems Management, PhD thesis, College of engineering , university of Tehran , Tehran, Iran.
23- Shin J. Y., Ajmal M., Yoo J., and Kim T. W. 2016. A Bayesian network-based probabilistic framework for drought forecasting and outlook. Advances in Meteorology 2016.
24- Sikorska A. E., and Seibert J. 2016. Value of different precipitation data for flood prediction in an alpine catchment: A Bayesian approach. Journal of Hydrology, 556: 961-971.
25- Valipour M. 2015. Long‐term runoff study using SARIMA and ARIMA models in the United States, Meteorological Applications, 22(3): 592-598.
26- Wan Y., and Konyha K. 2015. A simple hydrologic model for rapid prediction of runoff from ungauged coastal catchments, Journal of Hydrology, 528: 571-583.