1- ASTM standard. 2009. Standard test method for chemical analysis of wood charcoal. American Society for Testing and Materials (ASTM) International: Conshohocken, PA.
2- Atkinson C.J., Fitzgerald J.D.,and Hipps N.A .2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337:1–18.
3- Balik J., Pavlikova D., and Vanĕk V. 2007. The influence of long-term sewage sludge application on the activity of phosphatases in the rhizosphere of plants. Plant and Soil Environmental, 53:375–381.
4- Bolan N.1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and soil, 34:189–207.
5- Bremner J.M., and Mulvaney C.S. 1982. Nitrogen-Total. P. 595-624, In: A.L. Page et. al. (eds). Methods of soil analysis. Part 2. 2nd ed. Agron. Monograph 9.
6- Cakmak O., Oztur L., Karanlik S., Ozkan H., Kaya Z., and Cakmak I. 2001. Tolerance of 65 Durum wheat genotypes to zinc deficiency in calcareous soil. Journal of Plant Nutrition, 24:1381-1847.
7- Chapman H.D., and Pratt P.F. 1978. Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, University of California, Berkeley, USA, 3043p.
8- Caravaca F., Figueroa D., Alguacil M. M., and Rolan A. 2003. Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresource Technology, 90: 65-70.
9- Chan K.Y., Van Zwieten L., Meszaros I., Downie, A., and Joseph S. 2007. Agronomic values of green waste biochar as a soil amendment. Soil Research, 45:629–634.
10- Chan K.Y., Van Zwieten L., Meszaros I., Downie A., and Joseph S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46:437.
11- Chen J., Liu X., Zheng J., Zhang B., Lu H., Chi Z., Pan G., Li L., Zheng J., and Zhang X. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl. ied Soil Ecology, 71:33–44.
12- Chintala R., Mollinedo J., Schumacher T.E., Malo D.D, and Julson J.L. 2013. Effect of biochars on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60:393–404.
13- Emami A. 1997. Plant analysis methods (Volume I). Agricultural research, Soil and Water Research Institute. (in Persian)
14- Emmerling C., Embacher A., and Haubold-Rosar Mand Schröder D. 1996. Initiierung und forderung der mikrobiellen Biomasse und mikrobieller Aktivitäten in jungen Kippsubstraten durch organische Reststoffe. VDLUFA-Schriftenr, 44:579–582.
15- Fathi Gerdelidani A., Mirseyed Hosseini H., and Farahbakhsh M. 2016. Effect of spent mushroom compost (SMC) and sugar cane bagasse biochar on availability and fractions of inorganic phosphorus in a calcareous soil. Journal of Agricultural Engineering, 9 (39):127-144. (In Persian)
16- Garg S., and Bahl G.G. 2008. Phosphorus availability to maize as influenced by organic manures and fertilizer phosphorus associated with phosphatase activity in soils. Bioresource Technology, 5773–5777.
17- Gee G.W., and Bauder J.W. 1986. Physical and Mineralogical Methods. Pp: 383-409. In: Clute A (ed). Methods of Soil Analysis, part 1. ASA and SSSA, MedisonMadison Wisconsin.
18- Ginting D., Kessavalou, A., Eghball, B., and Doran, J.W. 2003. Greenhouse gas emissions and soil indicators four years after manure and compost applications. Journal of Environmental Quality, 32: 23–32.
19- Giusquiani P.L., arucchini Arucchini C.M., and Businelli M. 1988. Chemical properties of soils amended with compost of urban waste. Plant and Soil, 109:73-78.
20- Huang P. M. and Violante A. 1986. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. Pages 159–221 in P. M. Huang and M. Schnitzer, eds. Interactions of soil minerals with natural organics and microbes. SSSA, Madison, WI.
21- Jin Y., Liang X., He M., Liu Y., Tian G., and Shi J. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere, 142:128–135.
22- Khalil H.M.A., and Hassan R.M. 2015. International Journal of Plant Research, Raising the Productivity and Fiber Quality of Both White and Colored Cotton Using Eco-Friendly Fertilizers and Rice Straw, International Journal of Plant Research, 5(5):122-135.
23- Koide R.T., and Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza, 14:145–163.
24- Kourtev P.S., Ehrenfeld J.G., and Häggblom M. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology and Biochemistry, 35:895- 905.
25- Lambers H., Raven J.A., Shaver G.R., and Smith S.E. 2008. Plant nutrient acquisition strategies change with soil age. Trends in Ecology and Evolution, 23:95–103.
26- Lehmann J. D.a., Silva J.P. J.r., Steiner C., Nehls T., Zech W., and Glaser B. 2003.Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249:343–357.
27- Liang Y., Nikolic M., Peng Y., Chen W., and Jiang Y. 2005. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and Biochemistry, 37:1185–1195.
28- Liu Y., Yang M., Wu Y., Wang H., Chen Y., and Wu W.2011. Reducing CH4 and CO2 emission from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11:930–939.
29- Makoi J. H. J. R., Bambara S., and Ndakidemi P.A. 2010. Rhizosphere phosphatase enzyme activities and secondary metabolites in plants as affected by the supply of Rhizobium, lime and molybdenum in Phaseolus vulgaris L. Australian Journal of Crop Science, 4:590-597.
30- Marinari S., Masciandaro G., Ceccanti B., and Grego S. 2000. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72:9-17.
31- Marschner H., and Dell B. 1994; Nutrient uptake in mycorrhizal symbiosis, plant and Soil, 159: 89-10.
32- Mengel K., and Kirkby E. 2001. Principles of plant nutrition. 5th Ed., International Potash Institute, Bern, Switzerland.
33- Mkhabela M.S., and Warman P.R. 2005. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agriculture, Ecosystems and Environment, 106:57–67.
34- Mishra R.R. 2007. Soil microbiology. Translated by: A. Fallah, H. Besharati, & H. Khosravi, Aeeizh publisher, Pp:179.
35- Murphy J., and Riley J.P. 1962. A modified single solution method for the determination of phosphorous in natural waters. Analytica Chemica Acta, 27:31-36.
36- Nannipieri P., Giagnoni L., Renella G., Puglisi E., Ceccanti B., Masciandaro G., Fornasier F., Moscatelli M.C., and Marinari S.2012. Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48:743–762.
37- Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon and organic matter, Pp:539–579.
38- Nuruzzaman M., Lambers H., and Bolland M.D.A. 2006. Distribution of carboxylates ad acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. Plant and Soil, 281: 109-120.
39- Olsen S. R., Cole C.V., Watanabe F. S., and Dean L.A. 1954. Estimation of available phosphorus in soils by extracting with sodium bicarbonate. USDA Cric. 939. U. S. Gov. Print. Office, Washington, DC.
40- Priya k., and Garg V.K. 2004. Diynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with Cow dung and agricultural vesiduesresidues. Bioresource Technology, Pp:203-209.
41- Quiquampoix H.,and Mousain D. 2005. Enzymatic hydrolysis of organic phosphorus. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorous in the environment. CABI, Wallingford, UK, Pp:89–112.
42- Raiesi T., and Hosseinpur A.R. 2013. The rhizospheric effects of wheat (Triticum aestivum L.) on phosphorus availability and some biological properties in calcareous soils from Shahrekord plain. Journal of Science and Technology of Greenhouse Culture, 3;4 (4):51-65. (In Persian)
43- Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., and Lehmann J. 2011. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3):271-284.
44- Reis V.J., Reis F.B.J., Quesada D.M., de., Oliveira O.C.A., Alves B.J.R., Urquiaga S., and Boddey R.M. 2001. BilogicalBiological nitrogen fixation associated with tropical pasture grasses. Australian Journal of Plant Physiology, 28:837–844.
45- Renella G., Landi L., Ascher M.T., Ceccherini M.T., Pietramellara G., and Nannipieri P. 2006. Phosphomonoesterase production and persistence and composition of bacterial communities during plant material decomposition in soils in soil with different pH values. Soil Biology and Biochemistry, 38:795–802.
46- Roberts K.G., Gloy B.A., Joseph S., Scott N.R., and Lehmann J.2010. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science and Technology, 44:827-833.
47- Saviozzi A., Levi-Minzi R., Cardelli R., and Riffaldi R. 2001. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant and Soil, 233:251–259.
48- Steiner C., Teixeira W.G., Lehmann J., Nehls T., de Macˆedo J. L. V., Blum W. E. H., and Zech, W. 2007. Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291:275–290.
49- Tabatabai M.A., and Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1:301-307.
50- Tabatabai M.A. 1994. Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis. Part 2 – Microbiological and biochemical properties. Soil Science Society of America and American Society of Agronomy, Madison, WI, US, Pp:775–833.
51- Tarafdar J.C., and Jungk A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils, 3:199-204.
52- Tandon H.L.S. 1998. Methods of Analysis of Soils, Plants, Waters and Fertilizers. Fertilizers Development and Consultancy Organization, New Dehli.
53- Vanek S.J., and Lehmann J. 2014. Phosphorus availability to beans via interactions between mycorrhizas and biochar, Plant and Soil, 395:1–19, 105–123.
54- Whalen J.K., Chi C., and Olsen B.M. 2001. Nitrogen and phosphorous mineralization potentials of soil receiving repeated annul cattle manure applications. Journal of Biology and Fertility of Soils, 34:334-341.
55- Xu G., Sun J., Shao H., and Chang S.X. 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engineering, 62:54–60.
56- Yuan L., Fang D.H., Wnag Z.H., Shun H., and Huang J.G. 2000. Bio-mobilization of potassium from clay minerals: I. By ectomycorhizas. Pedosphere, 10:33