تعداد نشریات | 49 |
تعداد شمارهها | 1,844 |
تعداد مقالات | 19,488 |
تعداد مشاهده مقاله | 9,258,205 |
تعداد دریافت فایل اصل مقاله | 6,486,470 |
مطالعه ایزوترمهای جذب لاکاز توسط مونتموریلونیت K10 و زئولیت | ||
آب و خاک | ||
مقاله 14، دوره 33، شماره 1 - شماره پیاپی 63، اردیبهشت 1398، صفحه 191-203 اصل مقاله (1.07 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v33i1.76462 | ||
نویسندگان | ||
حدیثه رحمانی1؛ امیر لکزیان* 2؛ علی رضا کریمی2؛ اکرم حلاج نیا2 | ||
1دانشگاه فردوسی مشهد | ||
2فردوسی مشهد | ||
چکیده | ||
لاکازها آنزیمهایی توانمند دراکسید کردن ترکیبات فنولی و غیرفنولی مختلف و همچنین آلایندههای محیطی بسیار مقاوم هستند. یکی از مؤثرترین روشها برای بهبود ویژگیهای آنها نظیر بالا بردن پایداری این آنزیمها و حتی افزایش فعالیت آنها، تثبیت لاکازها بر حاملهای مختلف از جمله کانیها است. هدف از مطالعه حاضر، بررسی ویژگیهای جذب آنزیم لاکاز استخراج شده از قارچ ترامتس ورسیکالر (T. versicolor) توسط کانیهای مونتموریلونیت K10 و زئولیت در قالب ایزوترمهای جذبی لانگمویر، فروندلیچ، تمکین و دوبینین- رادوشکویچ بود. بر اساس نتایج این مطالعه، جذب لاکاز بر مونتموریلونیت بالاترین تطابق را نخست با مدل دوبینین- رادوشکویچ و سپس با مدل ایزوترم جذبی لانگمویر نشان داد. بر این اساس، جذب لاکاز توسط مونتموریلونیت احتمالاً فیزیکی بود و توزیع همگنی از جایگاههای فعال در سطح این کانی وجود داشت. از طرفی، جذب لاکاز توسط زئولیت بهترین انطباق را با مدل فروندلیچ نشان داد که این امر بر احتمال جذب چندلایهای آنزیم توسط سطوح ناهمگن و نیز شرایط جذب مطلوب دلالت دارد. همچنین، بر اساس مقادیر پارامتر تعادل (RL)، گرچه جذب برای هر دو کانی مورد مطالعه مطلوب بود، اما این مطلوب بودن در غلظتهای اولیه بالای لاکاز بیشتر بود. بطور کلی، جذب چند لایهای لاکاز بر سطح زئولیت، احتمال درجه بالاتری از ممانعت فضایی و تغییرات در ساختار آنزیمی را قوت میبخشد و متعاقباً کاهش کارآیی کاتالیزوری آنزیم نیز محتمل است. بنابراین بر اساس نتایج این مطالعه، مونتموریلونیت از شرایط مناسبتری برای استفاده به عنوان حامل آنزیم لاکاز برخوردار است. اگرچه، مطالعات تکمیلی مانند آزمایشات سینتیکی برای تصمیمگیریهای نهایی کمک کننده خواهند بود. | ||
کلیدواژهها | ||
ایزوترم؛ تثبیت؛ زئولیت؛ لاکاز؛ مونتموریلونیت | ||
مراجع | ||
1- Balarak D., Kord Mostafapour F., Azarpiraand H., and Joghataei A. 2017. Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. Journal of Pharmaceutical Research International, 20: 1-9.
2- Chapman H.D. 1965. Cation exchange capacity. p. 891-901. In C.A. Black (ed.) Methods of Soil Analysis. Part 2. American Society of Agronomy, Madison, Wis, USA.
3- Cowan D.A., and Fernandez-Lafuente R. 2011. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49: 326–346.
4- Dubinin M.M., Zaverina E.D., and Radushkevich L.V. 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21: 1351–1362.
5- Dwevedi A. 2016. Basics of Enzyme Immobilization. p. 21-44. In Enzyme Immobilization. Chapter 2. Springer International Publishing Switzerland.
6- Eastoe J., and Dalton J.S. 2000. Dynamic surface tension and adsorption mechanisms of surfactants at the air water interface. Advances in Colloid and Interface Science, 85: 103–144.
7- Freundlich H. 1906. Über die adsorption in lösungen (adsorption in solution). Zeitschrift für Physikalische Chemie, 57: 384–470.
8- Ghiaci M., Aghaei H., Soleimanian S., and Sedaghat M.E. 2009. Enzyme immobilization Part 1. Modified bentonite as a new and efficient support for immobilization of Candida rugose lipase. Applied Clay Science, 43: 289–295.
9- Gianfreda L., and Bollag J.M. 1994. Effect of soils on the behavior of immobilized enzymes. Soil Science Society of America Journal, 58: 1672–1681.
10- Habeeb A.F.S.A., and Hiramoto R. 1968. Reaction of proteins with glutaraldehyde. Archives of Biochemistry and Biophysics, 126: 16-26.
11- Hall K.R., Eagleton L.C., Acrivos A., and Vermeulen T. 1966. Pore- and solid- diffusion kinetics in fixed-bed adsorption under constant-pattern condition. Industrial and Engineering Chemistry Fundamentals, 5: 212–223.
12- Hameed B.H., Mahmoud D.K., and Ahmad A.L. 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158: 65–72.
13- Ho Y.S., and McKay G. 1998. Sorption of dye from aqueous solution by peat. Chemical Engineering, 70: 115–124.
14- Ho Y.S., Huang C.T., and Huang H.W. 2002. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 37: 1421–1430.
15- Jesionowski T., Zdarta J., and Krajewska B. 2014. Enzymes immobilization by adsorption: A review. Adsorption, 20: 801–821.
16- Lai C., Zeng G.M., Huang D.L., Zhao M.H., Huang H.L., Huang C., Wei Z., Li N.J., Xu P., Zhang C., and Xie G.X. 2013. Effect of ABTS on the adsorption of Trametes versicolor laccase on alkali lignin. International Biodeterioration and Biodegradation, 82: 180-186.
17- Linke D., Bouws H., Peters T., Nimtz M., Berger R.G., and Zorn H. 2005. Laccases of Pleurotus sapidus: Characterization and cloning. Journal of Agricultural and Food Chemistry, 53: 9498−9505.
18- Majeau J.A., Brar S.K., and Tyagi R.D. 2010. Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101: 2331–2350.
19- Makboul H.E., and Ottow J.C.G. 1979. Michaelis constant (Km) of acid phospatase as affected by montmorillonite, illite, and kaolinite clay minerals. Microbial Ecology, 5: 207-213.
20- Rosevear A., Kennedy J.F., and Cabral J.M.S. (Eds), 1987. Immobilised Enzymes and Cells, IOP Publishing Ltd., Bristol.
21- Ruggiero P., Sarkar J.M., and Bollag J.M. 1989. Detoxification of 2,4-dichlorophenol by a laccase immobilized on soil or clay. Soil Science, 147: 361–370.
22- Saltali K., Sari A., and Aydin M. 2007. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. Journal of Hazardous Materials, 141: 258–263.
23- Sheldon R.A. 2007. Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 49: 1289–1307.
24- Sheldon R.A., and van Pelt S. 2013. Enzyme immobilisation in biocatalysis: Why, what and how? Chemical Society Reviews, 42: 6223–6235.
25- Shindo H., Watanabe D., Onaga T., Urakawa M., Nakahara O., and Huang Q. 2002. Adsorption, Activity, and Kinetics of Acid Phosphatase as Influenced by Selected Oxides and Clay Minerals. Soil Science and Plant Nutrition, 48: 763-767.
26- Temkin M.J., and Pyzhev V. 1940. Recent modifications to Langmuir isotherms. Acta Physiochimica U.R.S.S, 12: 217–222.
27- Treybal R.E. 1968. Mass transfer operations. 2nd ed. McGraw Hill, New York.
28- Weber T.W., and Chakraborti R.K. 1974. Pore and solid diffusion models for fixed-bed adsorbers. American Institute of Chemical Engineers Journal (AICHE), 20: 228-238.
29- Wohlgemuth R. 2010. Biocatalysis—Key to sustainable industrial chemistry. Current Opinion in Biotechnology, 21: 713–724.
30- Wong L.S., Khan F., and Micklefield J. 2009. Selective covalent protein immobilization: Strategies and applications. Chemical Reviews, 109:4025–4053.
31- Zdarta J., Meyer A.S., Jesionowski T., and Pinelo M. 2018. A General overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8:92.
32- Zheng H., Liu D., Zheng Y., Liang S., and Liu Z. 2009. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials, 167: 141–147.
33- Zheng H., Wang Y., Zheng Y., Zhang H., Liang S., and Long M. 2008. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chemical Engineering, 143: 117–123. | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 399 |